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Abstract— The generalization error bound of the support
vector machine (SVM) depends on the ratio of the radius and
margin. However, conventional SVM only considers the maxi-
mization of the margin but ignores the minimization of the radius,
which restricts its performance when applied to joint learning of
feature transformation and the SVM classifier. Although several
approaches have been proposed to integrate the radius and
margin information, most of them either require the form of
the transformation matrix to be diagonal, or are nonconvex and
computationally expensive. In this paper, we suggest a novel
approximation for the radius of the minimum enclosing ball in
feature space, and then propose a convex radius-margin-based
SVM model for joint learning of feature transformation and
the SVM classifier, i.e., F-SVM. A generalized block coordinate
descent method is adopted to solve the F-SVM model, where the
feature transformation is updated via the gradient descent and
the classifier is updated by employing the existing SVM solver. By
incorporating with kernel principal component analysis, F-SVM
is further extended for joint learning of nonlinear transformation
and the classifier. F-SVM can also be incorporated with deep con-
volutional networks to improve image classification performance.
Experiments on the UCI, LFW, MNIST, CIFAR-10, CIFAR-100,
and Caltech101 data sets demonstrate the effectiveness of F-SVM.

Index Terms— Convex relaxation, max margin, radius-margin
error bound, support vector machine (SVM).

I. INTRODUCTION

THE support vector machine (SVM) and its extensions
are one class of the most successful machine learn-

ing methods [1], and have been widely adopted in various
application fields [2], [3]. Actually, SVM aims to seek the
optimal hyperplane with the maximum margin principle, but
the generalization error of SVM actually is a function of
the ratio of the radius and margin, i.e., radius-margin error
bound [4]. When feature mapping is given, the radius is fixed
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and can be ignored, and thus SVM can safely minimize the
generalization error by maximizing the margin. However, for
joint learning of feature transformation and the classifier, the
radius information is valuable and cannot be ignored.

Given a sample x, the feature transformation is defined as
a linear projection Ax, where A is the transformation matrix.
Denote by (u, b) a linear classifier. The radius-margin error
bound can then be utilized to guide the joint learning of
feature transformation A and classifier (u, b), resulting in
the classifier u�Ax + b. When the matrix A is constrained
to be diagonal, it becomes a joint feature weighting and
classifier learning problem [2]. Since the radius-margin error
bound is nonconvex, relaxation and approximation of the
radius are generally adopted in the existing models [5], [6].
Several approaches have been proposed from the perspec-
tive of the radius-margin error [2], [5]–[7], but most suffer
from the limitations of computational burden and simplified
forms of transformation. Relative margin machine (RMM) [5]
only considers the spread of the data along the direction
perpendicular to the classification hyperplane. Radius-margin-
based SVMs, e.g., margin-radius SVM (MR-SVM) [2], metric
learning-based radius-margin SVM (R-SVM+), and radius-
margin SVM for feature selection (RSVM+

μ ) [7], are only
applicable to feature weighting and selection.

Another strategy is to incorporate metric learning with
SVM. Metric learning can be adopted to learn a better linear
transformation matrix [6], [8], [9]. One simple approach to
combine metric learning and SVM is to directly deploy the
transformation obtained using metric learning into SVM. This
approach, however, usually cannot lead to a satisfying perfor-
mance [10]. Therefore, other approaches have been proposed
to integrate metric learning into SVM, e.g., support vector
metric learning (SVML) [10] and metric learning with SVM
(MSVM) [6]. But SVML [10] is designed for SVM with
Gaussian radial basis function kernel (RBF-SVM) and ignores
the radius information, while MSVM [6] is nonconvex.

In this paper, we propose a novel radius-margin-based SVM
model for joint learning of feature transformation and the
SVM classifier, i.e., F-SVM. Compared with existing radius-
margin-based SVM methods, we derive novel lower and upper
bounds for the relaxation of the radius. Unlike MR-SVM [2],
R-SVM+ and R-SVM+

μ [7] which are suggested for joint fea-
ture weighting and SVM learning, F-SVM can simultaneously
learn feature transformation M = A�A and the classifier
(w, b). Compared with the existing metric learning for SVM
methods, our F-SVM model considers both the radius and the
margin information. Compared with MSVM [6] which aims
to learn A and (u, b), and is nonconvex, our F-SVM jointly
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learns M and (w, b). And the united inequality constraint is
further introduced to improve the robustness and to reduce the
computational budget. Benefitted from the introduction of M
and united inequality constraint, we present a convex model
for joint feature transformation and classifier learning. A gen-
eralized coordinate descent (GBCD) algorithm is proposed to
solve our F-SVM model, which iterates alternately by updating
the feature transformation and classifier. Note that kernel SVM
is equivalent to performing linear SVM in the kernel principal
component analysis (PCA) space. We further extend linear
F-SVM in the kernel PCA space for joint learning of the
nonlinear transformation and classifier. Experiments have been
conducted on the 20 UCI data sets and the LFW database.
The results show that F-SVM outperforms SVM and the exist-
ing radius-margin-based SVMs. Furthermore, we incorporate
F-SVM with deep convolutional networks (CNNs) for image
classification, and achieve state-of-the-art performance on the
MNIST, CIFAR-10, CIFAR-100 and Caltech101 data sets.
To sum up, the main contributions of this paper are four fold.

1) Novel lower and upper bounds are derived for the radius
of the minimum enclosing ball (MEB). The bounds not
only offer a novel approximation of the radius, but also
lay a solid theoretical foundation to our F-SVM model.

2) A novel convex formulation of a radius-margin-based
SVM model, i.e., F-SVM, is proposed. In F-SVM, all
the constraints on distance are aggregated into one united
inequality constraint. Instead of learning A, our F-SVM
jointly learns M = A�A and (w, b), and thus can be
formulated into a convex program. To the best of our
knowledge, F-SVM is the first convex model for joint
learning of feature transformation and SVM classifier.

3) Benefitted from the united inequality constraint,
we develop a semiwhitened PCA method for initializ-
ing M. A generalized block coordinate descent (GBCD)
algorithm is suggested to solve our F-SVM model.
GBCD can converge to the global optimum, and is
much more efficient than RMM [5], R-SVM+, and
R-SVM+

μ [7] in training.
4) By revealing the equivalence of kernel SVM and linear

SVM in kernel PCA space, we further suggest a kernel
F-SVM model by conducting linear F-SVM in the kernel
PCA space.

The remainder of this paper is organized as follows.
Section II reviews the related work on radius-margin-based
SVM methods. Section III describes the model and algorithm
of F-SVM. Section IV extends F-SVM to the kernelized
version for nonlinear classification. Section V provides the
experimental results on the UCI, LFW, MNIST, CIFAR-10,
CIFAR-100, and Caltech101 data sets. Finally, the conclusions
are drawn in Section VI.

II. RELATED WORK

The radius-margin error bound not only provides a
theoretical explanation of the generalization performance
of SVM [1], but also has been extensively adopted for
improving kernel classification methods, e.g., model selec-
tion [11] and multiple kernel learning [12], [13]. Denote by
S = {(x1, y1), . . . , (xn, yn)} a training set, where xi ∈ Rd

stands for the i th training sample and yi ∈ {−1, +1} stands

for the corresponding class label of xi . Given a mapping
� : x �→ H to map the sample x to some feature space H,
the radius R of the MEB [12] is defined as

min
R,x0

R2, s.t. ��(xi ) − �(x0)�2
2 ≤ R2 ∀i. (1)

Suppose that the training set is linearly separable in the feature
space with the optimal hyperplane defined by u��(x)+b = 0.
Vapnik [1] shows that the expectation of the misclassification
probability depends not only on the margin but also on the
radius, and is bounded by the function of R2�u�2

2.
The SVM is well known as a max-margin model, which

only considers the margin 1/�u�2
2. When the feature space

is fixed, the radius is a constant and can thus be safely
ignored. But in many learning tasks, the model parame-
ters [11], combination of basis kernels [12], feature reweight-
ing, or transformation should usually be learned or tuned based
on the training data by incorporating both margin and radius
information [7], [13], [14].

This paper aims to jointly learn SVM together with the
feature transformation by minimizing the radius-margin ratio,
i.e., R2�u�2

2. Thus, a more detailed review is given on
this topic. Except for [6], most existing approaches [2], [7]
require the transformation matrix to be diagonal, and thus
are only applicable to feature reweighting and selection.
Direct use of the radius-margin ratio in SVM results in a
nonconvex optimization problem, which makes the learning
algorithm computationally expensive and unstable. In feature
reweighting and selection, the feature transformation matrix
should be diagonal, i.e., D√

μ = Diag{√μ} with
√

μ =
[√μ1, . . . ,

√
μk, . . . ,

√
μd ]�, where

√
μk is a scaling factor

for the kth feature.
Do et al. [2] suggest that the radius is bounded with

maxk μk R2
k ≤ R2

μ ≤ ∑
k μk R2

k , where Rk is the radius
of dimension k. By approximating R2

μ with its upper bound
∑

k μk R2
k , MR-SVM [2] solves the following convex relax-

ation problem:
min

w,b,ξ,μ

1

2

∑

k

w2
k

μk
+ C

∑
k μk R2

k

∑

i

ξ2
i

s.t. yi (w�xi + b) ≥ 1 − ξi ∀i∑

k

μk = 1, μk ≥ 0 ∀k (2)

where w = [w1, w2, . . . , wd ]� is the normal vector to the
classification hyperplane, and b/�w�2 is the offset of the
hyperplane from the origin along w. ξi denotes the i th slack
variable, and C stands for the tradeoff parameter. RO is
denoted by the half value of the maximum pairwise distance.
Do and Kalousis [7] introduce a tighter bound of the radius
RO ≤ Rμ ≤ ((1 + √

3)/2)RO , and propose another convex
model, i.e., R-SVM+

μ

min
w,b,ξ,μ,r

1

2

∑

k

w2
k

μk
+ λr + C

∑

i

ξi

s.t. yi(w�xi + b) ≥ 1 − ξi ∀i
ξi ≥ 0, i = 1, 2, . . . , n∑

k

μk = 1, μk ≥ 0 ∀k

1

2
(xi − x j )

�Dμ(xi − x j ) ≤ r ∀i, j (3)
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where Dμ = Diag{μ}. Furthermore, R-SVM+ [7] is developed
by controlling both the radius and margin with w.

Zhu et al. [6] propose a metric learning with the SVM
(MSVM) method for joint learning of the linear transforma-
tion and SVM classifier. Given the transformation matrix A,
an alternative R̄ = maxi �Axi − Ax̄�2

2 of the radius R
is adopted, where x̄ is the mean of the training samples.
Although Zhu et al. [6] claim that R = R̄, as demonstrated
in Theorem 1 of this paper, R̄ is an upper bound of R. The
MSVM model [6] is formulated as

min
u,b,ξ ,A

1

2
�u�2

2 + C
∑

i

ξ2
i

s.t. yi (u�Axi + b) ≥ 1 − ξi ∀i

�Axi − Ax̄�2 ≤ 1 ∀i. (4)

MSVM is nonconvex and can be solved using gradient
projection.

In this paper, we propose a novel relaxed convex model of
the radius-margin-based SVM, i.e., F-SVM, for joint learning
of the feature transformation and SVM classifier. Compared
with existing radius-margin-based SVM methods, F-SVM has
some distinguishing advantages. MSVM [6] is nonconvex,
while our F-SVM model is convex and our GBCD algo-
rithm converges to the global optimum. Unlike RMM [5],
the transformation in F-SVM is learned to minimize the
radius of the enclosing ball of all samples rather than to only
shrink the sample spanned along the direction perpendicular
to the hyperplane. Moreover, F-SVM is also different from
MR-SVM [2], R-SVM+, and R-SVM+

μ [7] from three aspects.
1) Instead of feature weighting, F-SVM can simultaneously

learn the feature transformation and classifier.
2) F-SVM adopts a new approximation for the radius of

MEB in feature space.
3) In F-SVM, individual inequality constraints are com-

bined into one holistic inequality constraint to improve
the robustness and training efficiency.

All these make F-SVM very promising for joint learning of
the feature transformation and SVM classifier, and the exper-
imental results further validate the effectiveness of F-SVM.

III. RADIUS-MARGIN-BASED SUPPORT

VECTOR MACHINE

A. Problem Formulation

Given the training set S, by introducing the slack variables
ξi (i = 1, 2, . . . , n), the SVM can be formulated as

min
u,b,ξ

1

2
�u�2

2 + C
∑

i

ξi

s.t. yi (u�xi + b) ≥ 1 − ξi ∀i

ξi ≥ 0, i = 1, 2, . . . , n (5)

where (u, b) are the parameters used to describe the learned
hyperplane u�x + b = 0. The objective function in (5)
aims to maximize the margin γ = 1/�u�2 while minimizing
the empirical risk

∑n
i=1 ξi . For joint learning, we introduce

a linear transformation matrix A and integrate the radius

information, resulting in the following radius-margin-based
SVM model:

min
u,b,ξ,A,R

1

2
�u�2

2 R2 + C
∑

i

ξi

s.t. yi (u�Axi + b) ≥ 1 − ξi ∀i

ξi ≥ 0, i = 1, 2, . . . , n (6)

where the radius R is defined as

min
R,x0

R2, s.t. �Axi − Ax0�2
2 ≤ R2, i = 1, 2, . . . , n. (7)

Note that R2 depends on matrix A and the problem in (6) is
nonconvex [7]. We introduce x̄ to denote the mean vector of
the training samples, i.e., x̄ = (1/n)

∑n
i=1 xi , and R̄ to denote

the largest Euclidean distance between the training samples
and the mean vector in the transformation space, i.e., R̄ =
maxi �Axi − Ax̄�2

2. Then, it can be proved that the radius R
is bounded by R̄.

Theorem 1: The radius R is bounded by R̄ by

1

2
R ≤ R ≤ R. (8)

Please refer to Appendix A the proof of Theorem 1.
e = R̄ − R is denoted as the error of approximation. From
Theorem 1, we have 0 ≤ e ≤ R, and thus R̄ can serve
as a reasonable approximation with theoretical guarantee.
Zhu et al. [6] claim that R = R̄. From Theorem 1, R̄
is only an approximation of R, and counter examples can
be easily found to illustrate R �= R̄. Let w = A�u and
M = A�A which is positively definite. Since the radius R
is upper bounded by R̄, we can approximate R with R̄. With
simple algebra, the radius-margin SVM model in (6) is relaxed
into the following formulation:

min
w,b,ξ,M,R̄

F(w, b, ξ , M, R̄) = 1

2
(w�M−1w)R̄2 + C

n∑

i=1

ξi

s.t. yi (w�xi + b) ≥ 1 − ξi ∀i

ξi ≥ 0, i = 1, 2, . . . , n

(xi − x̄)�M(xi − x̄) ≤ R̄2. (9)

Theorem 2: The problem in (9) is equivalent to the following
problem:

min
w,b,ξ,M

L(w, b, ξ , M) =
{

1

2
(w�M−1w) + C

n∑

i=1

ξi

}

s.t. yi (w�xi + b) ≥ 1 − ξi ∀i

ξi ≥ 0, i = 1, 2, . . . , n

(xi − x̄)�M(xi − x̄) ≤ 1 ∀i

M � 0. (10)

Proof: Denote by (ŵ, b̂, ξ̂ , M̂, R̂) the optimal solution to
the problem in (9). Let M̃ = M̂/R̂2 and R̃ = 1. It is obvious
that (ŵ, b̂, ξ̂ , M̃, R̃) is also the optimal solution to the problem
in (9) because F(ŵ, b̂, ξ̂ , M̂, R̂) = F(ŵ, b̂, ξ̂ , M̃, R̃).

Next we will show that (ŵ, b̂, ξ̂ , M̃) is the optimal solution
to the problem in (10). If (ŵ, b̂, ξ̂ , M̃) is not the optimal
solution to (10), there must exist some (w∗, b∗, ξ∗, M∗) that
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Fig. 1. Intuitive explanation on the goals of the three main steps of our algorithm. (a) By assuming �w�2 = 1, a semiwhitened PCA method is adopted for
the initialization of M, which is more reasonable than whitened PCA by considering both the radius and the margin information. (b) Subproblem on (w, b)
can then be solved by the off-the-shelf SVM solvers to maximize the margin. (c) M is updated by balancing the following two terms: 1) shrinking M based
on the weighted covariance matrix S and 2) expanding M along the direction of w. As a result, the updated M not only can decrease the radius of MEB, but
also may even increase the margin.

satisfies all inequality constraints and L(w∗, b∗, ξ∗, M∗) <
L(ŵ, b̂, ξ̂ , M̃). Then we can define R̃ = 1 and have
F(w∗, b∗, ξ∗, M∗, R̃) < F(ŵ, b̂, ξ̂ , M̃, R̃), which is contra-
dictory with the assumption that (ŵ, b̂, ξ̂ , M̃, R̃) is the optimal
solution to (9). Thus, we can solve the problem in (10) with
the optimal solution (ŵ, b̂, ξ̂ , M̃), and then obtain the optimal
solution (ŵ, b̂, ξ̂ , M̃, R̃) to (9).

Without loss of generality, we assume R̃ = 1 and seek
the corresponding optimal w and M by solving (10). More-
over, to make the model robust against outliers and noisy
samples, we combine the individual inequality constraints
(xi − x̄)�M(xi − x̄) ≤ 1, i = 1, 2, . . . , n into one inte-
grated inequality constraint [13]. By emphasizing more on
the samples far from the mean x̄, the integrated inequality
constraint is defined as

∑n
i=1 ωi (xi − x̄)�M(xi − x̄) ≤ ε with

ωi = ((exp(�xi − x̄�2
2))/(

∑n
j=1 exp(�x j − x̄�2

2))), resulting in
the following radius-margin-based SVM model:

min
w,b,ξ,M

1

2
(w�M−1w) + C

n∑

i=1

ξi

s.t. yi (w�xi + b) ≥ 1 − ξi ∀i

ξi ≥ 0, i = 1, 2, . . . , n
n∑

i=1

ωi (xi − x̄)�M(xi − x̄) ≤ ε

M � 0. (11)

The model above is a constrained optimization problem. The
constraints M � 0, ξi ≥ 0 and yi (w�xi + b) ≥ 1 − ξi

(i = 1, 2, . . . , n) define a convex set. Let the weighted covari-
ance matrix S = ∑n

i=1 ωi (xi − x̄)(xi − x̄)�. The constraint∑n
i=1 ωi (xi − x̄)�M(xi − x̄) ≤ ε can be equivalently written

as tr(MS) ≤ ε and also defines a convex set. The objective
function of (11) consists of two terms, i.e.,

∑n
i=1 ξi and

w�M−1w. It is obvious that
∑n

i=1 ξi is linear to ξ . According
to Appendix C, w�M−1w is convex to w and M � 0. To
sum up, all the constraints define a convex set, and objective
function is convex. Thus, the model in (11) is convex and can
be equivalently formulated as

min
w,b,ξ ,M

1

2
(w�M−1w) + C

n∑

i=1

ξi + ρtr(MS)

s.t. yi (w�xi + b) ≥ 1 − ξi ∀i

ξi ≥ 0, i = 1, 2, . . . , n

M � 0 (12)

where ρ is the regularization parameter determined by ε.
Based on the method of Lagrange multipliers [15], for every
ε ≥ 0, there is a ρ such that the Karush–Kuhn–Tucker
conditions are satisfied and the problems in (11) and (12) have
the same solutions. Similarly, for every ρ ≥ 0, there is also a ε.
In (11), the parameter ε should be manually set or determined
using cross validation. In this paper, instead of setting ε and
finding the optimal ρ� (refer to Lemma B.1), we empirically
set ρ for (12) that corresponds to the best average classification
accuracy in our experiments. Please refer to Appendix B for
the analysis of the equivalent of the two formulations. In the
following, we show that our F-SVM model is convex.

Theorem 3: The F-SVM model in (12) is a convex opti-
mization problem.

The proof can be found in Appendix C.

B. Optimization Algorithm

In this section, we propose an efficient GBCD algorithm to
solve the F-SVM model. Fig. 1 intuitively explains the goals
of its main steps (i.e., the initialization of M, the subproblem
on (w, b), and the subproblem on M). Fig. 2 illustrates
the subproblem and solution involved in each step. In the
following, we explain each step in detail.

1) Initialization of M: Proper initialization is helpful in
improving computational efficiency. To this end, by further
relaxing the F-SVM model in (12), we propose a semiwhitened
PCA-based initialization method of M.

Note that w�M−1w is upper bounded by [16]

w�M−1w = tr(ww�M−1)

≤ �w�2
2�M−1�2

≤ �w�2
2�M−1�∗ (13)

where � · �2 and � · �∗ denote the 	2-norm and the nuclear
norm of a matrix, respectively. The nuclear norm of a matrix,
also known as the trace norm, is defined as the summation
of all its singular values [17]. Based on (12) and (13), by
setting B = M−1, the subproblem of M can be rewritten as
the problem of B

min
B

L(B) = �B�∗ + τ �tr(B−1S)

s.t. B � 0 (14)

where τ � = ρ/�w�2. The eigenvalue decomposition of S is
S = U�U�, where � = Diag{λ1, λ2, . . . , λd } (λ1 ≥ λ2 ≥
· · · ≥ λd ≥ 0), and λi and the i th column of U denote the
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Fig. 2. Illustration of the subproblems with their solutions in our optimization algorithms. In the initialization stage, we initialize M by solving a nuclear
norm optimization problem. In the GBCD algorithm, we solve the subproblem on (w, b) by using the off-the-shelf SVM solver, and solve the subproblem on
M by using the projected gradient descent (PGD) algorithm. Our GBCD algorithm alternates between updating (w, b) and M until convergence.

ith eigenvalue and eigenvector, respectively. With U and �,
we define B̂ as

B̂ = U�U�, � = Diag{(τ �λ1)1/2, . . . , (τ �λd )1/2}. (15)

Theorem 4: Given a symmetric positively defined (SPD)
matrix S and τ � > 0, B̂ defined in (15) is the optimal solution
to the problem

B̂ = arg min
B

{L(B, τ �) = �B�∗ + τ �(tr(B−1S))}. (16)

The proof can be found in Appendix D. With B̂, the initial-
ization of M in (12) is then defined as

M0 = 1√
τ � U�U�, � = Diag{(λ1)−1/2, . . . , (λd )−1/2}.

(17)

Note that we assume �w�2 is known for the initialization of
M. From (17), �w�2 only affects the scale factor

√
τ � to the

linear transformation. Thus, we simply let �w�2 = 1 in our
implementation.

It is interesting to point out that M0 in (17) is closely
related with PCA and whitened PCA, and can be regarded as a
semiwhitened PCA. S = U�U� is denoted as the eigenvalue
decomposition of the covariance matrix S. PCA, whitened
PCA, and our semiwhitened PCA are described as follows.

1) In standard PCA, the linear transformation matrix is
defined as A = U� = �0U�. The Euclidean distance
in the transformation space can be written as �Axi −
Ax j �2 = (xi − x j )

�U�0U�(xi − x j ).
2) In the whitened PCA, the whitening transformation

matrix is defined as A = �−(1/2)U� [18]. The Euclidean
distance in the transformation space can be written
as �Axi − Ax j �2 = (xi − x j )

�U�−1U�(xi − x j ).
Whitening is a useful preprocessing strategy and has

been widely exploited in many applications, e.g., face
recognition [19] and object detection [20].

3) Based on (17), we define A = �−(1/4)U�, and the
Euclidean distance in the transformation space can then
be written as �Axi − Ax j �2 = (xi − x j )

�M0(xi − x j ).
Note that A is defined as �0U� for standard PCA and as
�−(1/2)U� for whitened PCA, we call A = �−(1/4)U�
together with M0 = U�−(1/2)U� the semiwhitened
PCA. Compared with whitened PCA, semiwhitened
PCA seems to be a more reasonable choice by consid-
ering both the radius and margin information.

In addition, the proposed initialization method is also con-
nected with eigenvalue power normalization (EPN), where
S̃ = U�pU�(0 ≤ p ≤ 1) is adopted for the normalization
of S. EPN has been used to measure the distances between
SPD matrices [21], [22], and has achieved promising perfor-
mance in image classification [22]. Considering its connections
with PCA, whitened PCA and EPN, it is natural to expect that
our semiwhitened PCA can find more applications in various
learning tasks.

2) Subproblem of (w, b): Given M, the F-SVM model can
be formulated as

min
w,b,ξ

1

2
w�Bw + C

n∑

i=1

ξi

s.t. yi (w�xi + b) ≥ 1 − ξi ∀i

ξi ≥ 0, i = 1, 2, . . . , n (18)

where B = M−1. The eigenvalue decomposition of M is
M = V�V�. By introducing M = L�L, the transformation
matrix L can be rewritten as L = �(1/2)V�. Let zi = Lxi and
v = �−(1/2)V�w. With simple algebra, the problem in (18)
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