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a b s t r a c t 

Recent deep models advance the task of semantic visual parsing by increasing the depth of networks and 

the resolution (size) of the predicted labelmaps. However, the contextual information within each layer 

and between layers is not fully explored. Long Short Term Memory Networks(LSTM) that learn to propa- 

gate information is well-suited to model pixels dependencies with respect to spacial locations within lay- 

ers and depths across layers. Unlike previous LSTM-based methods that tend to enhance representation 

of each pixel only by involving the information from adjacent area. This work proposes Progressively Dif- 

fused Networks (PDNs) to deal with complex semantic parsing tasks. It can explore spatial dependencies 

in a larger field that represents the rich contextual information among pixels. The proposed model has 

three appealing properties. First, it enables information to be progressively broadcast across feature maps 

by stacking multiple diffusion layers. Second, in each layer, multiple convolutional LSTMs are adopted to 

generate a series of feature maps with different ranges of contexts. Third, in each LSTM unit, a special 

type of atrous filters are designed to capture the short range and long range dependencies from vari- 

ous neighbors. Extensive experiments demonstrate the effectiveness of PDNs to substantially improve the 

performances of existing LSTM-based models. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Semantic parsing aims to predict the category label of each

pixel in an image, and it plays a significant role in many com-

plex vision problems, such as scene understanding and content-

based vision search. With the rapid development of representation

learning in recent years [1,2] , deep Convolutional Neural Networks

(CNNs) [3–7] have achieved remarkable progress in the task of se-

mantic parsing due to its hierarchical architecture and end-to-end

training strategy. The former transforms the input image into mul-

tiple levels of semantic representations, while the latter makes the

learned features transferrable. ( Fig. 1 ). 

In order to improve the performance of semantic parsing,

one way is to employ the deep Fully Convolutional Networks

(FCNs). With the depth of networks growing, such as residual net-

works [7] , each site (pixel) on the predicted label maps achieves

large receptive field and can make more global reasoning in the

dense prediction. For example, based on our experimental results,

the mIoU score on ADE20K MIT benchmarks [8] is about 27%
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hen applying 16-layer netwoks (i.e. VGG-16) [3] , and this value

s promoted by 8% when using 101-layer networks (i.e. Resnet-

01) [7] . However, due to the limitation of computation resources,

he growth of the depth is unsustainable. 

Another branch of works [10–12] tried to explore rich contexts

n images. These work reveal that incorporating graphical mod-

ls such as CRF [13] or MRF [14,15] to smooth the predicted la-

el maps was crucial. This post-processing improved the accuracy

f dense prediction. For instance, Liang et al. [13] employed the

ully connected pairwise CRF as a post-processing step to further

efine the label maps. In [15] , mean field algorithm (MF) algo-

ithm was applied to solve MRF iteratively and passes the infer-

nce error backward into CNNs, achieving the joint optimization of

RF and CNNs. In [16] , Zheng et al. further adopted a Recurrent

eural Networks (RNNs) to represent such inference procedure.

n order to reduce the computational cost of the above methods,

iu et al. [14] proposed to approximate MF with convolution and

ooling operations. Although these methods exploited the power

f graphical models in semantic parsing task, the context model-

ng process required careful design of the pairwise constraints and

id not explicitly enhance the pixel-wise representation, leading to

uboptimal parsing results. 

An alternative scheme focused on using Long Short Term Mem-

ry (LSTM) networks to automatically learn the spatial dependen-
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Fig. 1. An example of semantic parsing on ADE 20K dataset. From left to right are input image, ground-truth labeling, semantic parsing result by proposed PDNs and 

parsing result by LG-LSTM(Res101) [9] . Different from LG-LSTM that enhances representation of each pixel only by considering adjacent area, our model explores spatial 

dependencies in a larger field and captures the richer contexts among pixels. Therefore, the proposed PDNs can expand the receptive field effectively and achieve the more 

reasonable global reasoning. 

Fig. 2. The comparison of different types of LSTM unit. Sub-figure (a) and (b) show the previous pixel-wise LSTM unit (i.e. Diagonal BiLSTM [21] and LG-LSTM [9] ) that 

update the states of each site by adopting fixed local factors (i.e. adjacent sites). In (c), our proposed LSTM unit can capture the short-range and long-range dependencies 

from the divers neighbors and can generate more informative data representation. 
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ies. These data-driven methods applied contextual information to

nhance intermediate feature representations This branch of work

chieved promising results on recent semantic parsing tasks [9,17–

9] , where the property of long-range dependencies were used to

ass the information between neighbor pixels layer by layer. How-

ver, most of the existing approaches [9,19–21] was explored well-

esigned short distance. A wider range of information diffusion is

chieved by stacking multiple LSTM layers. As illustrated in Fig. 2

a) and (b), the feature enhancement of each position by the above

ethods is determined by the short distance neighbors (e.g. the

losest 2 to 8 adjacent positions), limiting the breadth and the

peed of information propagation. At the same time, all of the ex-

sting methods were based on fully-connected LSTM, whose com-

utational cost was another limitation. 

In this paper, we propose a novel Progressively Diffused Net-

orks (PDNs) that extend the traditional neural network structure

y spreading the contextual information on image feature maps,

nd demonstrate its superiority on various complex semantic pars-

ng tasks. PDNs introduce a stack of information diffusion lay-

rs for context modeling, each of which contains several multi-

imensional LSTMs. 

The advantage of proposed PDNs can be summarized as two as-

ects: the diversity of propagated contextual information and the

peed of propagation in each layer. First, in convolution based deep

emantic segmentation models, the context information propa-

ated from one location to its different neighbors is fixed in a cer-

ain layer. In contrast, by using various diffused LSTM units in our

odel, each location can propagate the different contextual infor-

ation to its neighbors with different distances. Thus our model

ffectively expands the scope of communication and is more ad-

quate to represent richer contextual information. Second, com-

ared with LSTM methods, the contextual information can spread

aster by using multiple LSTM units in a single layer. 
Specifically, we propose two types of diffused LSTMs. One is

alled spatial LSTM and the other is depth LSTM. Each spatial LSTM

n the diffusion layer generates a certain type of contextual fea-

ure maps. Intuitively, these contextual feature maps have different

eanings comparing with the ones generated by traditional CNNs.

ach entry in the convolutional maps represents the response of a

ocal area under a certain pattern. In contrast, each site of the con-

extual feature maps involves the information that is propagated

o its neighbors in the next state. Different with spatial LSTM, the

epth LSTM [9] is adopted to realize the communication of each

ite from one layer to the next. 

In each diffused LSTM unit, each type of contextual feature

aps is corresponding to a special atrous filter [22] , which is

sed to capture the diverse neighborhood information in a large

ange of local area. Finally, these filtering results will be integrated

o calculate the information of each site passed to its neighbors

r to itself in the next layer. Compared with the fully-connected

STM in previous works [9,18–20] , this convolution-based version

s more intuitive, and can significantly improve the computational

fficiency. 

This paper has following three contributions. (1) We propose

 Progressively Diffused Networks, which contain a module com-

osed of multiple diffusion layers. Such module is fully differen-

iable and can be flexibly embedded into deep neural networks

or explicitly capturing contextual dependency among image loca-

ions. (2) The special type of atrous filters are incorporated into

roposed diffusion layers, each of which is corresponding to a

pecial kind of contextual feature map. Through the convolutional

peration, each site can receive information from distinct neigh-

ors to further enhance its feature representation. (3) We obtain

ignificant improvement on two challenging datasets (i.e. ADE20K

IT Dataset [8] , PASCAL-Part Dataset [23] ) compared with previous

STM-based contextual modeling methods. 
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2. Related work 

The performance of computer vision tasks is heavily dependent

on the choice of visual representation. For that reason, many of

previous efforts in deploying computer vision models focused on

designing the pipelines to extract the effective visual representa-

tion [24–26] . Such feature engineering based methods are impor-

tant but require a lot of domain knowledge, severely limiting the

development of visual applications. In order to make the vision

models less dependent on feature engineer, representation learn-

ing [1,2] , which facilitates useful information extraction from raw

data for building predictors, has attracted much attention in the

past decade. 

A typical representation learning model is Convolutional Neu-

ral Networks (CNN) [4,27–29] , which is designed to process the

data with multiple arrays such as images [4] or videos [30] . By

stacking several convolution-pooling layers, this model transforms

the visual representation from one level into a slightly more ab-

stract level. Recently, many works tend to enhance representational

power of CNN by increasing the depth of architectures [5,7,31,32] ,

and achieve great success on image classification [4,7] . The dense

prediction task, such as semantic parsing [33–35] , has also ben-

efited from such deep feature learning methods [13,28] . In [28] ,

Long and Shelhamer firstly replaced fully-connected layers of CNN

with convolutional layers, making it possible to accomplish pixel-

wise prediction in the whole image by the deep model. Chen

et al. [22] further proposed the atrous convolution to explic-

itly control the resolution of feature responses, and exhibited the

atrous spatial pyramid pooling for dense predicting at multiple

scales. In [36] , Wang et al. proposed transition layers upon Decon-

volutional Networks (DCNN) to make the predicted video segmen-

tation results consistent in spacial and temporal domains. 

Meanwhile, in order to explicitly discover the intricate struc-

tures in the visual data for dense labeling, the graphic mod-

els [37] were applied to explore the rich information (e.g. long-

range dependencies or high-order potentials) in the image by

defining the spatial constrains. In [13] , the confidence maps gen-

erated by the Fully Convolutional Networks (FCN) [28] were fed

into the Conditional Random Field (CRF) with simple pairwise po-

tentials for post-processing, but this model treated the FCN and

CRF as separated components, limiting the joint optimization of

the model. In contrast, Schwing and Urtasun [15] jointly train the

FCN and Markov Random Field (MRF) by passing the error gen-

erated by MRF back to the neural networks. However, the itera-

tive inference algorithm (i.e. Mean Field inference) used in this

method is time consuming. To improve computational efficiency,

Liu et al. [14] solve MRF by the convolution operations, which de-

vises the additional layers to approximate the mean field inference

for pairwise terms. Although these methods significantly improve

the performance of dense labelling, the contextual information is

still not explicitly encoded into the pixel-wise representations. 

In the literature, the Long Short Term Memory (LSTM) Net-

work has been introduced to deal with the long-range dependen-

cies in the representation modeling, and this advanced Recurrent

Neural Network (RNN) has achieved great success in many in-

telligent tasks [38–41] . In recent years, it has been extended to

multi-dimensional communication [18,20,42] and adapted to rep-

resent the rich contexts in image spatial [9,19] . In [9] , a recent ad-

vance in LSTM-based context modeling was achieved by consid-

ering both short dependencies from local area and long-distance

global information from the whole image. Liang et al. [19] fur-

ther extended this work from multi-dimensional data to general

graph-structured data, and constructed an adaptive graph topology

to propagate contextual information between adjacent superpixels.

Nevertheless, in these works, the feature representation of each

position is affected by a limited local factors (i.e. the adjacent posi-
ions), which restricts the capacity of involving diverse visual cor-

elations in a large range. Different from using limited local LSTM

nits, the proposed PDNs captures the short-range and long-range

ependencies from various neighbors and can generate more infor-

ative representation for pixel-wise prediction. 

. Network overview 

An overview of the proposed framework is illustrated in Fig. 3 .

e define two kinds of diffused LSTMs, i.e. depth LSTM and spa-

ial LSTM, as our basic contextual information processing units. As

hown in Fig. 3 (a), the diffused LSTM layer, which includes one

epth LSTM and several spatial LSTMs, are used to spread the con-

ext information among different locations and to generate multi-

le contextual feature maps for the next layer. The diffused module

s obtained by stacking several diffused LSTM layers. 

In practise, given an input image, we first extract its feature

aps with a Deep Convolutional Neural Networks (DCNNs, e.g.,

esNet-101 [7] ). Then these feature maps are fed into a series of

iffusion layers to progressively spread the context information on

he image plane. After each diffused LSTM layer, the generated

epth maps (i.e. white maps in Fig. 3 ) are convolved with 1 × 1

lters to calculate the score maps for dense prediction. For the

odel training, intermediate supervision is used for each diffusion

ayer. We use the cross-entropy loss over all pixels as the loss func-

ion for training. In testing phase, final prediction is obtained ac-

ording to the output confidence maps of the entire networks. 

The diffusion layer exploits the multidimensional convolutional

STMs (i.e. denoted as depth LSTM, spatial LSTM-1, spatial LSTM-2

nd so on) to receive and broadcast the information. For each con-

olutional LSTM, the input is a set of contextual feature maps in

urrent state, while the output is a set of special type of contex-

ual feature maps for next state. In other words, each LSTM unit

an receive information generated by all the LSTMs from previous

iffusion layer. Specifically, depth LSTMs are used to mix the infor-

ation from previous layer and generate feature representation of

ach site in next layer, while spatial LSTMs are exploited to spread

nformation spatially. In spatial LSTMs, each site propagates infor-

ation to its n -nearest neighbors, where n varies for different spa-

ial LSTMs. This allows the diffusion layer to obtain multi-context

nformation. As illustrated in Fig. 3 (b), spatial LSTM-1 outputs the

ellow maps and each site on this map contains the information

hat it passes to its closest 8 neighbors in next state. Similarly,

he blue map is generated by spatial LSTM-2, and each site con-

ains the information spreading to its second closest 16 neighbors.

t should be noted that the input contextual feature maps to the

rst diffusion layer are the same, and they are the different copies

f the CNN output. 

With the convolutional LSTMs, the prediction of site α is af-

ected by different types of neighbors (e.g., 8 closest neighbors or

6 second closest neighbors). Fig. 3 (c) gives the details of convolu-

ion operations in each LSTM unit. When contextual feature maps

ith different meanings have been fed into LSTM unit, some spe-

ial type of atrous filters are applied to capture the short range and

ong range dependencies from various neighbors to a certain site

nd pass the accumulated information to the next state. For each

ernel, the green regions are learnable and others are always set

o zero. Thus depth feature maps specify the depth filter and only

he center of the kernel has weight value. The e -th spatial filter is

ssociated with e -th group contextual feature maps, and it intro-

uces non-zero weights in the sites whose distance to the kernel

enter is e . Note that, if the site α has neighbor α′ with distance

 , we need to adopt the information of site α′ in the e -th group

ontextual feature maps to enrich the representation of site α. 
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Fig. 3. The framework of proposed Progressively Diffused Networks. (a) Several diffusion layers are embedding into the deep Convolutional Neural Networks for context 

modeling. Each diffusion layer outputs several contextual feature maps (i.e. yellow and blue maps) for broadcasting neighborhood information on the image plane in the 

next layer. And depth feature maps (i.e. white maps) are also generated to communicate information of each site from one layer to the next. Note that each diffusion layer 

can have multiple spatial LSTM, and we only use two as an example in this figure. (b) The contextual feature maps with different meanings. The white maps are the output 

of Depth LSTM, and each site indicates the information passing from the corresponding site in previous state. The yellow maps are generated by spatial LSTM-1, and each 

site contains the information that the site will pass to its closest 8 neighbors in the current state. Similarly, each site in the blue maps denotes the information spreading to 

its second closest 16 neighbors. (c) Specific process in each LSTM unit. A special type of atrous filters are designed to capture the short range and long range dependencies 

from various neighbors to a certain site and pass the accumulated information to the next state. For each kernel, the green regions are learnable and others are always set 

to zero. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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. Progressive diffused networks 

The proposed PDNs aim at broadcasting the contextual infor-

ation on the image plane to increase the discrimination of fea-

ure representation for each pixel. This diffusion mechanism is par-

ially inspired by the observation of biological research that the

heromone released by a single cell can affect not only adjacent

ells, but also larger tissue areas [43] . Hence we propose the PDNs

o incorporate multi-contextual information by spreading informa-

ion from one site to a large field of neighbors. It includes two co-

erent aspects: (1) Using the information from different neighbors

o enrich the feature representation of one certain site, as illus-

rated in Fig. 2 . (2) Propagating different information from the cer-

ain site to its different neighbors to guide their further represen-

ations, as illustrated in Fig. 3 . 

The progressive diffused networks in this paper are similar to

ecent image processing work based on LSTM [9,18,20,21] . These

ork, however, use fixed factorization (e.g., 2 to 8 neighboring

ositions) to gather the contextual information of each position,

s shown in Fig. 2 (a, b). Different from these locally fixed LSTM

nits, the modified LSTM in our PDNs allows each location to re-

eive messages from different numbers of neighbors, as illustrated

n Fig. 2 (c). For most of the previous approaches [9,20] , the pa-

ameters of each LSTM are shared, thus the information that each

ite passes to all of its neighbors is equivalent. Therefore, these

ethods can be viewed as a special case of proposed diffusion net-

orks. 

.1. Receiving information in current layer 

We define two kinds of convolutional LSTM in the proposed

iffusion layer, named depth LSTM and spatial LSTM, by follow-

ng the definition in [9] . Intuitively, the depth LSTM maintains the
nformation from previous state at each site by applying the mem-

ry cells benefited from the LSTM mechanism. The spatial LSTM

alculates the information that each position travels outward to

heir neighbors. Note that different spatial LSTMs adopt different

 -nearest neighbors with different distances when propagating in-

ormation. For example, the yellow maps in Fig. 3 are the outputs

f spatial LSTM-1, and the value in each position denotes the in-

ormation that the position propagates to its 3 × 3 − 1 = 8 nearest

eighbors with distance 1. Analogously, the blue maps are the out-

uts of spatial LSTM-2, and the value in each position denotes the

essage passing to the 5 × 5 − 3 × 3 = 16 second nearest neigh-

ors with distance 2. 

As illustrated in Fig. 3 , the input image is corresponding to

 + 1 groups of hidden cell maps (denoted by contextual feature

aps in Fig. 3 ), which are generated by one depth LSTM and E

patial LSTM. We set E = 2 in this article for illustration. Let H 

s 
t,e ∈

 

M×N×D , e ∈ { 1 , 2 , . . . , E} denote the e -th group of hidden cell maps

enerated from e -th spatial LSTM, and the hidden cells in each

osition are used to propagate the information to its (2 e + 1) 2 −
(2 e − 1) 2 = 8 e neighbors with distance e . Let H 

d 
t ∈ R 

M×N×D indi-

ate the hidden cell maps calculated by the depth LSTM using the

eights updated in the t -th layer. Thus the gate values of a certain

STM unit (e.g., depth LSTM or spatial LSTM) in t -th layer can be

alculated by, 

g i t = σ ( 
∑ 

e { W 

s 
t,e } i ∗ H 

s 
t,e + { W 

d 
t } i ∗ H 

d 
t + b i t ) 

g f t = σ ( 
∑ 

e { W 

s 
t,e } f ∗ H 

s 
t,e + { W 

d 
t } f ∗ H 

d 
t + b f t ) 

g c t = σ ( 
∑ 

e { W 

s 
t,e } c ∗ H 

s 
t,e + { W 

d 
t } c ∗ H 

d 
t + b c t ) 

g o t = tanh ( 
∑ 

e { W 

s 
t,e } o ∗ H 

s 
t,e + { W 

d 
t } o ∗ H 

d 
t + b o t ) 

(1) 

here ∗ denotes the convolution operator and the symbol σ in-

icates the sigmoid function. W 

s 
t,e and W 

d 
t indicate the weights of

ernels associated with e -th spatial hidden cell maps and depth
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hidden cell maps in t -th layer. And the superscripts i, f, c and o

correspond to distinct state gates. 

When calculating the gate values, the convolutional operations

in Eq. (1) allow each site to receive information from distinct

neighbors. This is similar to feature enhancement in LG-LSTM [9] .

The difference is that LG-LSTM needs to combine the feature rep-

resentations from multi-neighbors and adopts the fully-connected

operation to calculate these gate values. 

4.2. Propagating information to next layer 

Denote the e -th group of memory cells for the spatial dimen-

sion as M 

s 
t,e ∈ R 

M×N×D and the memory cells for depth dimension

as M 

d 
t ∈ R 

M×N×D . Same as convolutional LSTM, the novel hidden

cell maps and memory cell maps in t + 1 -th layer are computed

as, 

(H 

s 
t+1 , 1 , M 

s 
t+1 , 1 ) = LSTM (H 

† 
t , H 

d 
t , M 

s 
t, 1 , { P } s t, 1 ) 

(H 

s 
t+1 , 2 , M 

s 
t+1 , 2 ) = LSTM (H 

† 
t , H 

d 
t , M 

s 
t, 2 , { P } s t, 2 ) 

. . . 

(H 

s 
t+1 ,E , M 

s 
t+1 ,E ) = LSTM (H 

† 
t , H 

d 
t , M 

s 
t,E , { P } s t,E ) 

(H 

d 
t+1 , M 

d 
t+1 ) = LSTM (H 

† 
t , H 

d 
t , M 

d 
t , { P } d t ) 

(2)

where H 

† 
t = {H 

s 
t,e } E e =1 is the set of spatial hidden cell maps. P =

{ W , B } indicates the parameter set. Any hidden cell maps or mem-

ory cell maps for the next diffusion layer can be calculated by the

following formula: 

M t+1 = g f t � M t + g i t � g c t 
H t+1 = g o t � tanh (M t+1 ) 

(3)

where � denotes the Hadamard product. 

In the above process, different numbers of spatial LSTMs allow

the model to arbitrarily enlarge field-of-view in the context mod-

eling. For a LSTM unit in the certain layer, there exist E + 1 filters

with distinct forms, and each one is associated with a group of

hidden cell maps. In this way, each site in the input image can pro-

vide distinct guidance to its neighbors with different distances in

the next diffusion layer, by employing specific spatial LSTMs, which

takes the spatial layouts and interactions into account for feature

learning. In order to ensure different neighbors receive various in-

formation, the weight matrices W 

s 
t and bias B 

s 
t of E spatial LSTMs

are not shared in this article. 

4.3. Comparison with existing methods 

In the literature, the Long Short Term Memory (LSTM) Networks

have been introduced to deal with the long-range dependencies in

the representation modeling, and this advanced Recurrent Neural

Networks (RNNs) have achieved great success in many intelligent

tasks [38–41] . 

In recent years, it has been extended to represent the rich con-

texts in image space [9,19,21] . Our work is close to these work

but there exit distinct difference. As showed in Table 1 , in or-

der to illustrate the advantages of our Diffused LSTM, we com-

pare our approach and related models in [21] and [9] from four

aspects: (1) Parameters of each LSTM unit . Both our Diffused LSTM

and Diagonal BiLSTM [21] apply the convolutional operation, thus

the number of parameters is proportional to the feature dimen-

sion, the only factor that causes the difference is the number of

involved neighbors in the LSTM unit. In contrast, the number of

LG-LSTM [9] parameters is proportional to the square of the fea-

ture dimension, since it exploits the fully connected operation in

each LSTM. All of the LSTM units listed in Table 1 contain 4 gate

operations, thus the numbers of parameters are multiplied by 4.

(2) Total parameters of the LSTM module . The parameters of the en-

tire module will be related to the number of LSTM layers. In this
rticle, we use 4 stacked LSTM layers and this number is less than

he previous works. On the other hand, both our model and LG-

LTM [9] use multiple LSTM units in each layer, which also in-

reases the number of related parameters. In practice, the feature

imension of LG-SLTM and our method are 64 and 256, thus for

he best model of these two method, total parameters of LSTM

odule are about 2949 K (LG-LSTM w/G) and 307 K (Diffused LSTM-

4NB), respectively. Therefore, even with the higher feature dimen-

ion, our method still has less parameters in total. (3) The incre-

ental receptive field size . This item shows the change of receptive

eld [44] of each site before and after adding the LSTM module.

he variable r in the Table 1 is the side length of receptive field.

hen our model uses 8 nieghborhood context information, the

ncremental receptive field is slightly smaller than LG-LSTM [9] ,

ainly because our model use less LSTM layers. In contrast, if the

umber of neighbors increases to 24, the advantage will be high-

ighted. Since the receptive field in Diagonal BiLSTM [21] is not a

quare, the incremental receptive field is not listed. For fair com-

arison, we assume that the LSTM module is stacked on the top

f Resnet101 [22] . In such case, the value of s is 8 and the in-

reased of LG-LSTM and our Diffused LSTM are (64 + r) 2 − r 2 and

(96 + r) 2 − r 2 , where r is the respective field of each site on the

utput feature maps of ResNet101. Obviously, our method can en-

arge the receptive field more effectively. (4) GPU memory cost . Ac-

ording to Table 1 , the cost of GPU memory is positively correlated

o the total number of parameters. The feature dimension of Diag-

nal BiLSTM and LG-LSTM are 512 and 64, which are the standard

etting in their article. This value is set as 256 for our method.

hen we calculate this result, the size of feature maps is down-

ampled to 40 × 40 by convolutional operations. 

. Experiments 

In this section, we demonstrate the effectiveness of proposed

DNs in semantic parsing tasks. In the following, we first give a

rief overview of the datasets and evaluation metrics. Then we

valuate different architecture variants to verify the validity of im-

ortant components in our model. The performance of PDNs on

oth scene parsing and human parsing tasks are investigated at

he end of this section. 

Datasets and evaluation metrics . We validate the effectiveness

f proposed PDNs on two challenging semantic parsing datasets.

DE20K MIT [8] is a large-scale dataset for scene-centric semantic

arsing task. It includes 150 semantic categories, and most cate-

ories have the similar appearance. In this dataset, 20,210 images

re employed for model training and another 20 0 0 images for val-

dation. PASCAL-Person-Part dataset is a fine-grained human pars-

ng benchmark collected by Chen et al. [23] from PASCAL VOC 2010

ataset. It contains the detailed part annotation for each person

nd these annotations are merged into six person parts (i.e. Head,

orso, Upper/Lower Arms and Upper/Lower Legs) and one back-

round category [19,45,46] . Totally, 1716 images are used for model

raining and 1817 for test. 

Implementation details . In our experiments, our architecture

s implemented based on Caffe platform [47] and our models are

rained according to two settings. The first one is based on sin-

le NVIDIA GeForce GTX TITAN X GPU with 12GB memory. In

uch case, the parameters in the BN layers are fixed and batch

ize is 1. The second one is based on the eight TITAN X GPUs

ith 12GB memory, thus the parameters in the BN layers are up-

ated by the synchronized cross-GPU strategy, which is also ap-

lied in PSPNet [48] . In this case, the batch size is set as 16. The

nput image is randomly cropped to 321 × 321 for model training.

our diffusion layers are stacked as a module and inserted into

ifferent part of the convolutional neural networks (i.e. ResNet-
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Table 1 

The comparison of our model, Diagonal BiLSTM [21] and LG-LSTM [9] from four aspects: (1) parameters of each LSTM unit, (2) 

total parameters of the LSTM module, (3) the incremental receptive field, (4) GPU memory cost. For LG-LSTM, ‘w/o G’ and ‘w/ G’ 

indicate without and with considering the global information. The suffix ‘NB’ in our method denotes the number of neighbors 

adopted for context modeling. The variable d in the second and third column indicates the feature dimension of each site in 

the feature maps, r in the fourth column is the side length of receptive field of each site, and s denotes the offset of receptive 

fields of two adjacent sites. In practice, the variable d in LG-LSTM, Diagonal BiLSTM and our method are 64, 512 and 256. The 

value of s on the top of ResNet101 is 8 [22] . 

Method Parameter of each LSTM Total parameter of the module Increasedreceptive field GPU cost 

Diag. BiLSTM [21] 4 × (4 × d) = 16 d 12 × 4 × (4 × d) = 192 d – ≈ 0.1 G 

LG-LSTM w/o G [9] 4 × (9 × d 2 ) = 36 d 2 5 × 2 × 4 × (9 × d 2 ) = 360 d 2 [ s × (9 − 1) + r] 2 − r 2 ≈ 4.0 G 

LG-LSTM w/ G [9] 4 × (18 × d 2 ) = 72 d 2 5 × 2 × 4 × (18 × d 2 ) = 720 d 2 – –

Diffused LSTM-8NB 4 × (9 × d) = 36 d 4 × 2 × 4 × (9 × d) = 288 d [ s × (7 − 1) + r] 2 − r 2 ≈ 0.2 G 

Diffused LSTM-24NB 4 × (25 × d) = 100 d 4 × 3 × 4 × (25 × d) = 1200 d [ s × (13 − 1) + r] 2 − r 2 ≈ 0.9 G 

Fig. 4. Visualization of valid receptive field (VRF) introduced by Zhao et al. [49] . The input image from PASCAL-Person-Part dataset is showed in (a). The VRF of the red dot 

calculated on the output feature maps of ResNet101 [22] is showed in (b). Obviously, our method adopting 8 neighbors (c) and 24 neighbors (d) can further enlarge the VRF 

of each site in the score maps. Best to enlarge three times. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Table 2 

Experimental results of different numbers of diffusion layers on PASCAL-Person-Part 

dataset. The ‘syn † ’ indicates BN synchronization when using multiple GPUs. Note 

that all of the above accuracies are not the final results of the model, but the pre- 

diction results of the LSTM module in the network. 

Number of Layers pixel acc. % mIoU % syn † pixel acc. % syn † mIoU % 

PDNs (1 layer) 93.0 61.6 95.4 65.2 

PDNs (2 layers) 93.1 61.8 95.7 66.3 

PDNs (3 layers) 93.3 62.4 95.9 67.1 

PDNs (4 layers) 93.3 62.5 96.2 67.7 
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01 1 ) with the residual connections. We fine-tune the model based

n the pre-trained Convolutional Neural Networks. The learning

ate of the newly added layers is initialized as 2 . 5 × 10 −3 and that

f other previously trained layers is initialized as 2 . 5 × 10 −4 . All

he parameters in the diffusion layers are randomly initialized from

 Gaussian distribution with the mean 0 and the variance 0.01. We

rain all the models using stochastic gradient descent with the mo-

entum of 0.9, and weight decay of 0.0 0 05. 

.1. Ablative study 

In this subsection, we conduct ablation experiments on PASCAL-

erson-Part dataset to validate effectiveness of different compo-

ents of our model. For all succeeding experiments, the size of fi-

al output feature maps are 1/8 of the original image. If there is

o special explanation, we use 24 neighbors to enrich the feature

epresentation of each element on the feature maps in this subsec-

ion. 

Valid receptive field. In literature, the receptive fields (RF) of

he neural units can be computed according to the network ar-

hitecture (i.e. the filter size, stride and number of layers) [44] .

arge RF can be obtained by simply enlarging the filter size and

he stride in each layer or constructing deeper networks. Recently,

he concept of valid receptive field (VRF) is introduced in [49,50] .

t is a sub-region in the receptive field, which provides the valid

nformation to the central point for its prediction. For traditional

eep convolutional neural networks such as ResNet101 [7] , due to

he network is very deep, the receptive field is usually as large as

he input image. However, as showed in Fig. 4 (b), the valid recep-

ive field [49] still fails to cover every pixels on a certain person

art in sometimes. In this experiment, we insert the LSTM mod-

le into the middle position between ResNet101 5b layer and 5c
1 http://liangchiehchen.com/projects/DeepLab.html . 

d  

o  

T  
ayer. With the number of neighbors growing, e.g., from 8 neigh-

ors in Fig. 4 (c) to 24 neighbors in Fig. 4 (d), the VRF of each site in

he score maps can be enlarged obviously. It demonstrates that the

roposed LSTM module can involve rich contexts among data ele-

ent and further promote the ability of global reasoning of each

ite. 

Performance ofdifferent diffusion layers. We evaluate the per-

ormance of different diffusion layers to validate that informa-

ion diffusion can improve the discriminative ability of each site.

able 2 shows the breakdown IoU results, and the improvement

an be observed by gradually adopting more diffusion layers. It

emonstrates that stacking multiple LSTM layers can effectively

iffuse the information on the feature maps and enhance the fea-

ure representation of each site for dense prediction. At the same

ime, we can find that the margin between the third layer and the

ourth layer is small. Intuitively, we can assume that the informa-

ion has been effectively propagated in the feature maps in the

ourth layer. In practice, we insert the LSTM module into the mid-

le position between ResNet101 5 b layer and 5 c layer, and add the

oftmax classifier on the top of each diffusion layer. Thus the pre-

iction results in Table 2 are based on the output confidence maps

f different diffusion layers, but not the final results of the model.

he final segmentation accuracies of the full model are reported

http://liangchiehchen.com/projects/DeepLab.html
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Table 3 

The breakdown time consuming (millisecond per image) of each 

model. The results are based on the average time cost of all im- 

ages in the test set. The marks ‘1M’ and ‘2M’ indicate the num- 

ber of diffused module inserted into ResNet101 architecture. Note 

that LG-LSTM [9] in this table is our implementation by using 

Resnet101 [7] as the bottom neural networks. 

Method Res101 CRF LSTM Total 

DeepLab-v2 [22] 381 ms 4773 ms – 5154 ms 

LG-LSTM [9] 381 ms – 294 ms 675 ms 

PDNs-1M 381 ms – 112 ms 493 ms 

PDNs-2M 381 ms – 224 ms 605 ms 

Table 4 

Experimental results on ADE20K val set. 

Method BaseNet BN Syn. pixel acc. % mIoU % 

FCN [28] 69.05 24.86 

DeepLab [13] 71.06 27.08 

Deeplab-v2 [7] Res101 75.09 35.07 

Deeplab-v2 + CRF [7] Res101 77.22 36.79 

PSPNet [48] Res101 � 80.64 41.96 

Grid-LSTM [20] 69.37 25.11 

LG-LSTM [9] 69.91 25.79 

LG-LSTM [9] Res101 77.17 36.41 

PDNs-8NB-1Module Res101 77.10 36.18 

PDNs-24NB-1Module Res101 77.51 37.02 

PDNs-24NB-2Modules Res101 77.59 37.71 

PDNs-8NB-1Module Res101 � 79.69 40.87 

PDNs-24NB-1Module Res101 � 80.30 41.56 

PDNs-24NB-2Modules Res101 � 80.81 41.89 
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in Tables 4 and 5 , which are calculated by up-sampling confidence

maps extracted from ResNet 5c layer 8 times. 

Time consuming. Since the CRF-based post processing [22] also

considers the spatial dependence between different sites. In

Table 3 , we report the time consuming of DeepLab-v2 [22] and var-

ious LSTM-based structures in test phase. Our PDNs can realize fast

computation in testing without requiring extra inference for solv-

ing CRF. At the same time, since the parameters of our model are

less than LG-LSTM, the total time consuming for testing is less as

well. Therefore, our approach is more suitable for large-scale se-

mantic parsing task. 

5.2. Experiment results and comparisons 

ADE20K dataset [8] . We compare our model with six seman-

tic parsing methods: FCN [28] , DeepLab [13] , Grid-LSTM [20] ,
Table 5 

Experimental results ( IoU ) on PASCAL-Person-Part set. †

Method head torso u-arms

DeepLab [13] 78.1 54.0 37.3 

HAZN [45] 80.8 59.1 43.1 

Attention [46] – – –

ResNet [7] 85.1 68.4 50.9 

ResNet + CRF [7] 84.2 68.8 51.2 

Deeplab-v3 † (Res101) [51] 87.7 72.7 57.1 

PSPNet † (Res101) [48] 88.2 71.4 57.9 

Grid-LSTM [20] 81.9 58.9 43.1 

Diagonal BiLSTM [21] 82.7 60.6 45.0 

LG-LSTM [9] 82.7 61.0 45.4 

Graph-LSTM [19] 82.7 62.7 46.9 

LG-LSTM (Res101) [9] 86.0 69.1 52.8 

PDNs-8NB-1Module 85.7 68.4 52.6 

PDNs-24NB-1Module 85.5 69.9 53.3 

PDNs-24NB-2Modules 85.7 70.1 53.8 

PDNs-24NB-1Module † 87.1 73.9 56.9 

PDNs-24NB-2Modules † 88.4 74.5 56.1 
G-LSTM [9] , DeepLab-v2 [22] and PSPNet [48] . These meth-

ds can be grouped into two categories: CNN-based meth-

ds: [13,22,28,48] and LSTM-based methods: [9,20] . The first cat-

gory employs convolution and pooling operations to directly ex-

ract the abstract feature representation. The second category uses

STM to construct short-distance and long-distance spatial depen-

encies. 

Since ADE20K dataset is a newly proposed large-scale scene

arsing dataset, all the results in Table 4 are given based on our

wn implementation. All of the comparison methods have trained

0 0,0 0 0 iterations without any extra data. According to Table 4 ,

he proposed PDNs outperform the baseline method DeepLab-

2(Res101) [22] in terms of pixel accuracy and mean IoU with

.50% and 2.64% respectively. Compared with existing LSTM-based

ethods, such as LG-LSTM(Res101) [9] , our best configuration is

till able to achieve 1.3% promotion in terms of mean IoU. It well

emonstrates that incorporating the contextual information from

he larger range into representation learning can further enhance

he discriminative ability of deep features. Fig. 5 gives the vi-

ualization results of our method, DeepLab-v2(Res101) and LG-

STM(Res101). It is obvious that PDNs can effectively distinguish

imilar objects in complex scenes by local and global reason-

ng. For fair comparison with state-of-the-art methods, we enlarge

he batchsize (i.e. 16 images) of proposed method by using BN

ynchronization in the training phase. According to Table 4 , our

ethod can achieve comparable segmentation accuracy compared

ith PSPNet [48] . It even obtains slightly higher pixel accuracy

han PSPNet over all of the categories. 

To strictly evaluate the effectiveness of using different num-

ers of spatial neighbors, we also report the performance of using

 spatial neighbors and 24 spatial neighbors. We use the capital

NB’ to indicate the number of spatial neighboring connections for

ach site. According to Table 4 , ‘PDNs-24NB’ with 24 spatial neigh-

ors outperforms that with 8 neighbors by 0.84% over the met-

ic of mIoU by using single GPU. By applying synchronized cross-

PU batch normalization, the gap has further enlarged to 1.12%.

hese results is in agreement with the experiment about valid re-

eptive field. Additionally, we also find that embedding multiple

STM modules at different depths of the network can further im-

rove the performance of the model. 

PASCAL-Person-Part dataset [23] . Table 5 shows the compar-

son results with ten approaches [9,13,19–22,45,46,48,51] on the

etric of mean IoU. An obvious improvement, i.e. 2.5% increase by

DNs over the DeepLab-v2(Res101) [22] , can be observed from the

omparison on breakdown categories. In order to reflect the ad-
 indicates BN synchronization. 

 l-arms u-legs l-legs bkg. mIoU 

36.9 33.7 29.6 92.9 51.8 

42.8 39.0 34.5 93.6 56.1 

– – – – 56.4 

51.2 46.7 39.4 95.6 62.4 

52.2 46.8 39.4 95.3 62.6 

58.1 53.4 51.7 97.6 68.3 

58.9 52.8 50.5 98.3 68.6 

46.9 40.1 34.6 86.0 56.0 

47.6 42.0 37.3 88.1 57.6 

47.8 42.3 38.0 88.6 58.0 

47.7 45.7 40.9 94.6 60.2 

52.0 47.3 43.1 95.2 63.6 

51.9 46.6 42.9 95.3 63.3 

53.1 47.4 43.6 95.5 64.0 

54.0 49.0 45.7 96.2 64.9 

56.7 52.0 51.4 98.0 67.9 

57.1 53.5 50.1 98.6 68.3 
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Fig. 5. Visualization of parsing results on ADE20K MIT dataset [8] . From left to right are input image, groundtruth labeling, parsing result by proposed PDNs, by LG-LSTM 

(Res101) [9] and by DeepLab-v2 (Res101) [22] . All of the models are trained on single GPU. Best viewed in color. 

Fig. 6. Visualization of parsing results on PASCAL-Person-Part dataset [23] . From left to right are input image, groundtruth labeling, parsing result by proposed PDNs, by 

LG-LSTM (Res101) [9] and by DeepLab-v2 (Res101) [22] . All of the models are trained on single GPU. Best viewed in color. 
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antages of proposed PDNs in context modeling, we implement the

G-LSTM [9] by adopting Resnet101 [7] as the bottom neural net-

orks. Such model achieves mean IoU of 63.6%, which is still 1.3%

ess than our best model. When the model is trained by using BN

ynchronization, the mIoU of our method is 68.3%, which is com-

arable with Deeplab-v3 [51] and PSPNet [48] . The visualization of

arsing results on this dataset are shown in Fig. 6 . 

. Conclusion 

This work presented Progressively Diffused Network (PDN) to

odel the information propagation on the image plane. By adopt-

ng convolutional LSTM with special atrous filters, the stacked dif-

usion layers make the context information from a certain site

preading to a large range of the image in a few steps, which effec-

ively enlarge the valid receptive field of each site. This work has

emonstrated diffused layer is a simple yet effective module for

ontext propagation, where PDN outperforms previous LSTM based

ethods without bells and whistles. 

Future work will explore PDN in many other dense predication

asks, such as instance object segmentation, crowd flow estimation

nd so on. Moreover, how to accelerate PDN to deal with real-

ime application is still an open issue. At last, combining proposed

ethod with other techniques, such as knowledge graph, is also an

xciting research direction. 
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