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ABSTRACT

Recent deep models advance the task of semantic visual parsing by increasing the depth of networks and
the resolution (size) of the predicted labelmaps. However, the contextual information within each layer
and between layers is not fully explored. Long Short Term Memory Networks(LSTM) that learn to propa-
gate information is well-suited to model pixels dependencies with respect to spacial locations within lay-
ers and depths across layers. Unlike previous LSTM-based methods that tend to enhance representation
of each pixel only by involving the information from adjacent area. This work proposes Progressively Dif-
fused Networks (PDNs) to deal with complex semantic parsing tasks. It can explore spatial dependencies
in a larger field that represents the rich contextual information among pixels. The proposed model has
three appealing properties. First, it enables information to be progressively broadcast across feature maps
by stacking multiple diffusion layers. Second, in each layer, multiple convolutional LSTMs are adopted to
generate a series of feature maps with different ranges of contexts. Third, in each LSTM unit, a special
type of atrous filters are designed to capture the short range and long range dependencies from vari-
ous neighbors. Extensive experiments demonstrate the effectiveness of PDNs to substantially improve the

performances of existing LSTM-based models.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Semantic parsing aims to predict the category label of each
pixel in an image, and it plays a significant role in many com-
plex vision problems, such as scene understanding and content-
based vision search. With the rapid development of representation
learning in recent years [1,2], deep Convolutional Neural Networks
(CNNs) [3-7] have achieved remarkable progress in the task of se-
mantic parsing due to its hierarchical architecture and end-to-end
training strategy. The former transforms the input image into mul-
tiple levels of semantic representations, while the latter makes the
learned features transferrable. (Fig. 1).

In order to improve the performance of semantic parsing,
one way is to employ the deep Fully Convolutional Networks
(FCNs). With the depth of networks growing, such as residual net-
works [7], each site (pixel) on the predicted label maps achieves
large receptive field and can make more global reasoning in the
dense prediction. For example, based on our experimental results,
the mloU score on ADE20K MIT benchmarks [8] is about 27%
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when applying 16-layer netwoks (i.e. VGG-16) [3], and this value
is promoted by 8% when using 101-layer networks (i.e. Resnet-
101) [7]. However, due to the limitation of computation resources,
the growth of the depth is unsustainable.

Another branch of works [10-12] tried to explore rich contexts
in images. These work reveal that incorporating graphical mod-
els such as CRF [13] or MRF [14,15] to smooth the predicted la-
bel maps was crucial. This post-processing improved the accuracy
of dense prediction. For instance, Liang et al. [13] employed the
fully connected pairwise CRF as a post-processing step to further
refine the label maps. In [15], mean field algorithm (MF) algo-
rithm was applied to solve MRF iteratively and passes the infer-
ence error backward into CNNs, achieving the joint optimization of
MRF and CNNs. In [16], Zheng et al. further adopted a Recurrent
Neural Networks (RNNs) to represent such inference procedure.
In order to reduce the computational cost of the above methods,
Liu et al. [14] proposed to approximate MF with convolution and
pooling operations. Although these methods exploited the power
of graphical models in semantic parsing task, the context model-
ing process required careful design of the pairwise constraints and
did not explicitly enhance the pixel-wise representation, leading to
suboptimal parsing results.

An alternative scheme focused on using Long Short Term Mem-
ory (LSTM) networks to automatically learn the spatial dependen-
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Fig. 1. An example of semantic parsing on ADE 20K dataset. From left to right are input image, ground-truth labeling, semantic parsing result by proposed PDNs and
parsing result by LG-LSTM(Res101) [9]. Different from LG-LSTM that enhances representation of each pixel only by considering adjacent area, our model explores spatial
dependencies in a larger field and captures the richer contexts among pixels. Therefore, the proposed PDNs can expand the receptive field effectively and achieve the more

reasonable global reasoning.
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Fig. 2. The comparison of different types of LSTM unit. Sub-figure (a) and (b) show the previous pixel-wise LSTM unit (i.e. Diagonal BiLSTM [21] and LG-LSTM [9]) that
update the states of each site by adopting fixed local factors (i.e. adjacent sites). In (c), our proposed LSTM unit can capture the short-range and long-range dependencies

from the divers neighbors and can generate more informative data representation.

cies. These data-driven methods applied contextual information to
enhance intermediate feature representations This branch of work
achieved promising results on recent semantic parsing tasks [9,17-
19], where the property of long-range dependencies were used to
pass the information between neighbor pixels layer by layer. How-
ever, most of the existing approaches [9,19-21] was explored well-
designed short distance. A wider range of information diffusion is
achieved by stacking multiple LSTM layers. As illustrated in Fig. 2
(a) and (b), the feature enhancement of each position by the above
methods is determined by the short distance neighbors (e.g. the
closest 2 to 8 adjacent positions), limiting the breadth and the
speed of information propagation. At the same time, all of the ex-
isting methods were based on fully-connected LSTM, whose com-
putational cost was another limitation.

In this paper, we propose a novel Progressively Diffused Net-
works (PDNs) that extend the traditional neural network structure
by spreading the contextual information on image feature maps,
and demonstrate its superiority on various complex semantic pars-
ing tasks. PDNs introduce a stack of information diffusion lay-
ers for context modeling, each of which contains several multi-
dimensional LSTMs.

The advantage of proposed PDNs can be summarized as two as-
pects: the diversity of propagated contextual information and the
speed of propagation in each layer. First, in convolution based deep
semantic segmentation models, the context information propa-
gated from one location to its different neighbors is fixed in a cer-
tain layer. In contrast, by using various diffused LSTM units in our
model, each location can propagate the different contextual infor-
mation to its neighbors with different distances. Thus our model
effectively expands the scope of communication and is more ad-
equate to represent richer contextual information. Second, com-
pared with LSTM methods, the contextual information can spread
faster by using multiple LSTM units in a single layer.

Specifically, we propose two types of diffused LSTMs. One is
called spatial LSTM and the other is depth LSTM. Each spatial LSTM
in the diffusion layer generates a certain type of contextual fea-
ture maps. Intuitively, these contextual feature maps have different
meanings comparing with the ones generated by traditional CNNs.
Each entry in the convolutional maps represents the response of a
local area under a certain pattern. In contrast, each site of the con-
textual feature maps involves the information that is propagated
to its neighbors in the next state. Different with spatial LSTM, the
depth LSTM [9] is adopted to realize the communication of each
site from one layer to the next.

In each diffused LSTM unit, each type of contextual feature
maps is corresponding to a special atrous filter [22], which is
used to capture the diverse neighborhood information in a large
range of local area. Finally, these filtering results will be integrated
to calculate the information of each site passed to its neighbors
or to itself in the next layer. Compared with the fully-connected
LSTM in previous works [9,18-20], this convolution-based version
is more intuitive, and can significantly improve the computational
efficiency.

This paper has following three contributions. (1) We propose
a Progressively Diffused Networks, which contain a module com-
posed of multiple diffusion layers. Such module is fully differen-
tiable and can be flexibly embedded into deep neural networks
for explicitly capturing contextual dependency among image loca-
tions. (2) The special type of atrous filters are incorporated into
proposed diffusion layers, each of which is corresponding to a
special kind of contextual feature map. Through the convolutional
operation, each site can receive information from distinct neigh-
bors to further enhance its feature representation. (3) We obtain
significant improvement on two challenging datasets (i.e. ADE20K
MIT Dataset [8], PASCAL-Part Dataset [23]) compared with previous
LSTM-based contextual modeling methods.
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2. Related work

The performance of computer vision tasks is heavily dependent
on the choice of visual representation. For that reason, many of
previous efforts in deploying computer vision models focused on
designing the pipelines to extract the effective visual representa-
tion [24-26]. Such feature engineering based methods are impor-
tant but require a lot of domain knowledge, severely limiting the
development of visual applications. In order to make the vision
models less dependent on feature engineer, representation learn-
ing [1,2], which facilitates useful information extraction from raw
data for building predictors, has attracted much attention in the
past decade.

A typical representation learning model is Convolutional Neu-
ral Networks (CNN) [4,27-29], which is designed to process the
data with multiple arrays such as images [4] or videos [30]. By
stacking several convolution-pooling layers, this model transforms
the visual representation from one level into a slightly more ab-
stract level. Recently, many works tend to enhance representational
power of CNN by increasing the depth of architectures [5,7,31,32],
and achieve great success on image classification [4,7]. The dense
prediction task, such as semantic parsing [33-35], has also ben-
efited from such deep feature learning methods [13,28]. In [28],
Long and Shelhamer firstly replaced fully-connected layers of CNN
with convolutional layers, making it possible to accomplish pixel-
wise prediction in the whole image by the deep model. Chen
et al. [22] further proposed the atrous convolution to explic-
itly control the resolution of feature responses, and exhibited the
atrous spatial pyramid pooling for dense predicting at multiple
scales. In [36], Wang et al. proposed transition layers upon Decon-
volutional Networks (DCNN) to make the predicted video segmen-
tation results consistent in spacial and temporal domains.

Meanwhile, in order to explicitly discover the intricate struc-
tures in the visual data for dense labeling, the graphic mod-
els [37] were applied to explore the rich information (e.g. long-
range dependencies or high-order potentials) in the image by
defining the spatial constrains. In [13], the confidence maps gen-
erated by the Fully Convolutional Networks (FCN) [28] were fed
into the Conditional Random Field (CRF) with simple pairwise po-
tentials for post-processing, but this model treated the FCN and
CRF as separated components, limiting the joint optimization of
the model. In contrast, Schwing and Urtasun [15] jointly train the
FCN and Markov Random Field (MRF) by passing the error gen-
erated by MRF back to the neural networks. However, the itera-
tive inference algorithm (i.e. Mean Field inference) used in this
method is time consuming. To improve computational efficiency,
Liu et al. [14] solve MRF by the convolution operations, which de-
vises the additional layers to approximate the mean field inference
for pairwise terms. Although these methods significantly improve
the performance of dense labelling, the contextual information is
still not explicitly encoded into the pixel-wise representations.

In the literature, the Long Short Term Memory (LSTM) Net-
work has been introduced to deal with the long-range dependen-
cies in the representation modeling, and this advanced Recurrent
Neural Network (RNN) has achieved great success in many in-
telligent tasks [38-41]. In recent years, it has been extended to
multi-dimensional communication [18,20,42| and adapted to rep-
resent the rich contexts in image spatial [9,19]. In [9], a recent ad-
vance in LSTM-based context modeling was achieved by consid-
ering both short dependencies from local area and long-distance
global information from the whole image. Liang et al. [19] fur-
ther extended this work from multi-dimensional data to general
graph-structured data, and constructed an adaptive graph topology
to propagate contextual information between adjacent superpixels.
Nevertheless, in these works, the feature representation of each
position is affected by a limited local factors (i.e. the adjacent posi-

tions), which restricts the capacity of involving diverse visual cor-
relations in a large range. Different from using limited local LSTM
units, the proposed PDNs captures the short-range and long-range
dependencies from various neighbors and can generate more infor-
mative representation for pixel-wise prediction.

3. Network overview

An overview of the proposed framework is illustrated in Fig. 3.
We define two kinds of diffused LSTMs, i.e. depth LSTM and spa-
tial LSTM, as our basic contextual information processing units. As
shown in Fig. 3(a), the diffused LSTM layer, which includes one
depth LSTM and several spatial LSTMs, are used to spread the con-
text information among different locations and to generate multi-
ple contextual feature maps for the next layer. The diffused module
is obtained by stacking several diffused LSTM layers.

In practise, given an input image, we first extract its feature
maps with a Deep Convolutional Neural Networks (DCNNs, e.g.,
ResNet-101 [7]). Then these feature maps are fed into a series of
diffusion layers to progressively spread the context information on
the image plane. After each diffused LSTM layer, the generated
depth maps (i.e. white maps in Fig. 3) are convolved with 1x 1
filters to calculate the score maps for dense prediction. For the
model training, intermediate supervision is used for each diffusion
layer. We use the cross-entropy loss over all pixels as the loss func-
tion for training. In testing phase, final prediction is obtained ac-
cording to the output confidence maps of the entire networks.

The diffusion layer exploits the multidimensional convolutional
LSTMs (i.e. denoted as depth LSTM, spatial LSTM-1, spatial LSTM-2
and so on) to receive and broadcast the information. For each con-
volutional LSTM, the input is a set of contextual feature maps in
current state, while the output is a set of special type of contex-
tual feature maps for next state. In other words, each LSTM unit
can receive information generated by all the LSTMs from previous
diffusion layer. Specifically, depth LSTMs are used to mix the infor-
mation from previous layer and generate feature representation of
each site in next layer, while spatial LSTMs are exploited to spread
information spatially. In spatial LSTMs, each site propagates infor-
mation to its n-nearest neighbors, where n varies for different spa-
tial LSTMs. This allows the diffusion layer to obtain multi-context
information. As illustrated in Fig. 3(b), spatial LSTM-1 outputs the
yellow maps and each site on this map contains the information
that it passes to its closest 8 neighbors in next state. Similarly,
the blue map is generated by spatial LSTM-2, and each site con-
tains the information spreading to its second closest 16 neighbors.
It should be noted that the input contextual feature maps to the
first diffusion layer are the same, and they are the different copies
of the CNN output.

With the convolutional LSTMs, the prediction of site « is af-
fected by different types of neighbors (e.g., 8 closest neighbors or
16 second closest neighbors). Fig. 3(c) gives the details of convolu-
tion operations in each LSTM unit. When contextual feature maps
with different meanings have been fed into LSTM unit, some spe-
cial type of atrous filters are applied to capture the short range and
long range dependencies from various neighbors to a certain site
and pass the accumulated information to the next state. For each
kernel, the green regions are learnable and others are always set
to zero. Thus depth feature maps specify the depth filter and only
the center of the kernel has weight value. The e-th spatial filter is
associated with e-th group contextual feature maps, and it intro-
duces non-zero weights in the sites whose distance to the kernel
center is e. Note that, if the site « has neighbor o’ with distance
e, we need to adopt the information of site &’ in the e-th group
contextual feature maps to enrich the representation of site c.
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Fig. 3. The framework of proposed Progressively Diffused Networks. (a) Several diffusion layers are embedding into the deep Convolutional Neural Networks for context
modeling. Each diffusion layer outputs several contextual feature maps (i.e. yellow and blue maps) for broadcasting neighborhood information on the image plane in the
next layer. And depth feature maps (i.e. white maps) are also generated to communicate information of each site from one layer to the next. Note that each diffusion layer
can have multiple spatial LSTM, and we only use two as an example in this figure. (b) The contextual feature maps with different meanings. The white maps are the output
of Depth LSTM, and each site indicates the information passing from the corresponding site in previous state. The yellow maps are generated by spatial LSTM-1, and each
site contains the information that the site will pass to its closest 8 neighbors in the current state. Similarly, each site in the blue maps denotes the information spreading to
its second closest 16 neighbors. (c) Specific process in each LSTM unit. A special type of atrous filters are designed to capture the short range and long range dependencies
from various neighbors to a certain site and pass the accumulated information to the next state. For each kernel, the green regions are learnable and others are always set
to zero. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4. Progressive diffused networks

The proposed PDNs aim at broadcasting the contextual infor-
mation on the image plane to increase the discrimination of fea-
ture representation for each pixel. This diffusion mechanism is par-
tially inspired by the observation of biological research that the
pheromone released by a single cell can affect not only adjacent
cells, but also larger tissue areas [43]. Hence we propose the PDNs
to incorporate multi-contextual information by spreading informa-
tion from one site to a large field of neighbors. It includes two co-
herent aspects: (1) Using the information from different neighbors
to enrich the feature representation of one certain site, as illus-
trated in Fig. 2. (2) Propagating different information from the cer-
tain site to its different neighbors to guide their further represen-
tations, as illustrated in Fig. 3.

The progressive diffused networks in this paper are similar to
recent image processing work based on LSTM [9,18,20,21]. These
work, however, use fixed factorization (e.g., 2 to 8 neighboring
positions) to gather the contextual information of each position,
as shown in Fig. 2(a, b). Different from these locally fixed LSTM
units, the modified LSTM in our PDNs allows each location to re-
ceive messages from different numbers of neighbors, as illustrated
in Fig. 2(c). For most of the previous approaches [9,20], the pa-
rameters of each LSTM are shared, thus the information that each
site passes to all of its neighbors is equivalent. Therefore, these
methods can be viewed as a special case of proposed diffusion net-
works.

4.1. Receiving information in current layer

We define two kinds of convolutional LSTM in the proposed
diffusion layer, named depth LSTM and spatial LSTM, by follow-
ing the definition in [9]. Intuitively, the depth LSTM maintains the

information from previous state at each site by applying the mem-
ory cells benefited from the LSTM mechanism. The spatial LSTM
calculates the information that each position travels outward to
their neighbors. Note that different spatial LSTMs adopt different
n-nearest neighbors with different distances when propagating in-
formation. For example, the yellow maps in Fig. 3 are the outputs
of spatial LSTM-1, and the value in each position denotes the in-
formation that the position propagates to its 3 x 3 — 1 = 8 nearest
neighbors with distance 1. Analogously, the blue maps are the out-
puts of spatial LSTM-2, and the value in each position denotes the
message passing to the 5 x5 —3 x 3 =16 second nearest neigh-
bors with distance 2.

As illustrated in Fig. 3, the input image is corresponding to
E +1 groups of hidden cell maps (denoted by contextual feature
maps in Fig. 3), which are generated by one depth LSTM and E
spatial LSTM. We set E = 2 in this article for illustration. Let H{ , €
RMxNxD ‘o ¢ {1 2, ... E} denote the e-th group of hidden cell maps
generated from e-th spatial LSTM, and the hidden cells in each
position are used to propagate the information to its (2e +1)2 —
(2e — 1)2 = 8e neighbors with distance e. Let ¢ € RM*NxD indi-
cate the hidden cell maps calculated by the depth LSTM using the
weights updated in the t-th layer. Thus the gate values of a certain
LSTM unit (e.g., depth LSTM or spatial LSTM) in t-th layer can be
calculated by,

gjt = G(Ze{wts,e}i * /Hg,e + {Wtd}i * H? + blt)

g =0 (TAWS ) 5 Hy o + (WY 1! + b))
8 =0 (T AWE w15 o + (WA 5 1 + b)

g0 = tanh (3 (WS, )0« Hi , + (W0« 1T + bP)

(1)

where * denotes the convolution operator and the symbol o in-
dicates the sigmoid function. WS, and W¢ indicate the weights of
kernels associated with e-th spatial hidden cell maps and depth
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hidden cell maps in t-th layer. And the superscripts i, f, ¢ and o
correspond to distinct state gates.

When calculating the gate values, the convolutional operations
in Eq. (1) allow each site to receive information from distinct
neighbors. This is similar to feature enhancement in LG-LSTM [9].
The difference is that LG-LSTM needs to combine the feature rep-
resentations from multi-neighbors and adopts the fully-connected
operation to calculate these gate values.

4.2. Propagating information to next layer

Denote the e-th group of memory cells for the spatial dimen-
sion as M§ , e RM*NxD and the memory cells for depth dimension
as M% e RMxNxD_Same as convolutional LSTM, the novel hidden
cell maps and memory cell maps in t + 1-th layer are computed
as,

(Hgﬂ,l* M?ﬂ,l) = LSTM(HT’ H?’ M?,l' {P}gj)
(H§+1.2’ M§+1,2) = LSTM(HT, Hf, Mf.z’ {P}f,z)

(Hiﬂfs M§+1,E) = LSTM(HT’ Hf’, M?E’ {p}i,E)
He, ML) = LSTM(H], #d, ME. (P}

t+1°

where HI = {# JE_; is the set of spatial hidden cell maps. P =
{w, B} indicates the parameter set. Any hidden cell maps or mem-
ory cell maps for the next diffusion layer can be calculated by the

following formula:

Mg =gloMi+gog (3)
Her1 = 8 © tanh(Mgyq)

where ® denotes the Hadamard product.

In the above process, different numbers of spatial LSTMs allow
the model to arbitrarily enlarge field-of-view in the context mod-
eling. For a LSTM unit in the certain layer, there exist E + 1 filters
with distinct forms, and each one is associated with a group of
hidden cell maps. In this way, each site in the input image can pro-
vide distinct guidance to its neighbors with different distances in
the next diffusion layer, by employing specific spatial LSTMs, which
takes the spatial layouts and interactions into account for feature
learning. In order to ensure different neighbors receive various in-
formation, the weight matrices W; and bias B} of E spatial LSTMs
are not shared in this article.

4.3. Comparison with existing methods

In the literature, the Long Short Term Memory (LSTM) Networks
have been introduced to deal with the long-range dependencies in
the representation modeling, and this advanced Recurrent Neural
Networks (RNNs) have achieved great success in many intelligent
tasks [38-41].

In recent years, it has been extended to represent the rich con-
texts in image space [9,19,21]. Our work is close to these work
but there exit distinct difference. As showed in Table 1, in or-
der to illustrate the advantages of our Diffused LSTM, we com-
pare our approach and related models in [21] and [9] from four
aspects: (1) Parameters of each LSTM unit. Both our Diffused LSTM
and Diagonal BiLSTM [21] apply the convolutional operation, thus
the number of parameters is proportional to the feature dimen-
sion, the only factor that causes the difference is the number of
involved neighbors in the LSTM unit. In contrast, the number of
LG-LSTM [9] parameters is proportional to the square of the fea-
ture dimension, since it exploits the fully connected operation in
each LSTM. All of the LSTM units listed in Table 1 contain 4 gate
operations, thus the numbers of parameters are multiplied by 4.
(2) Total parameters of the LSTM module. The parameters of the en-
tire module will be related to the number of LSTM layers. In this

article, we use 4 stacked LSTM layers and this number is less than
the previous works. On the other hand, both our model and LG-
SLTM [9] use multiple LSTM units in each layer, which also in-
creases the number of related parameters. In practice, the feature
dimension of LG-SLTM and our method are 64 and 256, thus for
the best model of these two method, total parameters of LSTM
module are about 2949K (LG-LSTM w/G) and 307K (Diffused LSTM-
24NB), respectively. Therefore, even with the higher feature dimen-
sion, our method still has less parameters in total. (3) The incre-
mental receptive field size. This item shows the change of receptive
field [44] of each site before and after adding the LSTM module.
The variable r in the Table 1 is the side length of receptive field.
When our model uses 8 nieghborhood context information, the
incremental receptive field is slightly smaller than LG-LSTM [9],
mainly because our model use less LSTM layers. In contrast, if the
number of neighbors increases to 24, the advantage will be high-
lighted. Since the receptive field in Diagonal BiLSTM [21] is not a
square, the incremental receptive field is not listed. For fair com-
parison, we assume that the LSTM module is stacked on the top
of Resnet101 [22]. In such case, the value of s is 8 and the in-
creased of LG-LSTM and our Diffused LSTM are (64 +r)% — r2 and
(96 +1)2 — 12, where r is the respective field of each site on the
output feature maps of ResNet101. Obviously, our method can en-
large the receptive field more effectively. (4) GPU memory cost. Ac-
cording to Table 1, the cost of GPU memory is positively correlated
to the total number of parameters. The feature dimension of Diag-
onal BiLSTM and LG-LSTM are 512 and 64, which are the standard
setting in their article. This value is set as 256 for our method.
When we calculate this result, the size of feature maps is down-
sampled to 40 x 40 by convolutional operations.

5. Experiments

In this section, we demonstrate the effectiveness of proposed
PDNs in semantic parsing tasks. In the following, we first give a
brief overview of the datasets and evaluation metrics. Then we
evaluate different architecture variants to verify the validity of im-
portant components in our model. The performance of PDNs on
both scene parsing and human parsing tasks are investigated at
the end of this section.

Datasets and evaluation metrics. We validate the effectiveness
of proposed PDNs on two challenging semantic parsing datasets.
ADE20K MIT (8] is a large-scale dataset for scene-centric semantic
parsing task. It includes 150 semantic categories, and most cate-
gories have the similar appearance. In this dataset, 20,210 images
are employed for model training and another 2000 images for val-
idation. PASCAL-Person-Part dataset is a fine-grained human pars-
ing benchmark collected by Chen et al. [23] from PASCAL VOC 2010
dataset. It contains the detailed part annotation for each person
and these annotations are merged into six person parts (i.e. Head,
Torso, Upper/Lower Arms and Upper/Lower Legs) and one back-
ground category [19,45,46]. Totally, 1716 images are used for model
training and 1817 for test.

Implementation details. In our experiments, our architecture
is implemented based on Caffe platform [47] and our models are
trained according to two settings. The first one is based on sin-
gle NVIDIA GeForce GTX TITAN X GPU with 12GB memory. In
such case, the parameters in the BN layers are fixed and batch
size is 1. The second one is based on the eight TITAN X GPUs
with 12GB memory, thus the parameters in the BN layers are up-
dated by the synchronized cross-GPU strategy, which is also ap-
plied in PSPNet [48]. In this case, the batch size is set as 16. The
input image is randomly cropped to 321 x 321 for model training.
Four diffusion layers are stacked as a module and inserted into
different part of the convolutional neural networks (i.e. ResNet-
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Table 1

The comparison of our model, Diagonal BiLSTM [21] and LG-LSTM [9] from four aspects: (1) parameters of each LSTM unit, (2)
total parameters of the LSTM module, (3) the incremental receptive field, (4) GPU memory cost. For LG-LSTM, ‘w/o G’ and ‘w/ G’
indicate without and with considering the global information. The suffix ‘NB’ in our method denotes the number of neighbors
adopted for context modeling. The variable d in the second and third column indicates the feature dimension of each site in
the feature maps, r in the fourth column is the side length of receptive field of each site, and s denotes the offset of receptive
fields of two adjacent sites. In practice, the variable d in LG-LSTM, Diagonal BiLSTM and our method are 64, 512 and 256. The

value of s on the top of ResNet101 is 8 [22].

Method Parameter of each LSTM  Total parameter of the module  Increasedreceptive field  GPU cost
Diag. BiLSTM [21] 4x(4xd)=16d 12x4x (4xd)=192d - ~01G
LG-LSTM w/o G [9] 4 x (9xd?) =36 d? 5x2x4x(9xd?) =360 d? [sxO-1)+rP-r? ~4.0G
LG-LSTM w/ G [9] 4 x (18 x d?) =72 d? 5x2x4x(18xd?)=720d> - -
Diffused LSTM-8NB 4x(9xd)=36d 4x2x4x(9xd)=288d [sx (7—-1)+rP—1? ~0.2G
Diffused LSTM-24NB 4 x (25 x d) =100 d 4x3x4x(25xd)=1200d [sx(1B-1)+rP 12 ~0.9G

(b)

(d)

Fig. 4. Visualization of valid receptive field (VRF) introduced by Zhao et al. [49]. The input image from PASCAL-Person-Part dataset is showed in (a). The VRF of the red dot

calculated on the output feature maps of ResNet101 [22] is showed in (b). Obviously,

our method adopting 8 neighbors (c) and 24 neighbors (d) can further enlarge the VRF

of each site in the score maps. Best to enlarge three times. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

101") with the residual connections. We fine-tune the model based
on the pre-trained Convolutional Neural Networks. The learning
rate of the newly added layers is initialized as 2.5 x 10-3 and that
of other previously trained layers is initialized as 2.5 x 10~%. All
the parameters in the diffusion layers are randomly initialized from
a Gaussian distribution with the mean 0 and the variance 0.01. We
train all the models using stochastic gradient descent with the mo-
mentum of 0.9, and weight decay of 0.0005.

5.1. Ablative study

In this subsection, we conduct ablation experiments on PASCAL-
Person-Part dataset to validate effectiveness of different compo-
nents of our model. For all succeeding experiments, the size of fi-
nal output feature maps are 1/8 of the original image. If there is
no special explanation, we use 24 neighbors to enrich the feature
representation of each element on the feature maps in this subsec-
tion.

Valid receptive field. In literature, the receptive fields (RF) of
the neural units can be computed according to the network ar-
chitecture (i.e. the filter size, stride and number of layers) [44].
Large RF can be obtained by simply enlarging the filter size and
the stride in each layer or constructing deeper networks. Recently,
the concept of valid receptive field (VRF) is introduced in [49,50].
It is a sub-region in the receptive field, which provides the valid
information to the central point for its prediction. For traditional
deep convolutional neural networks such as ResNet101 [7], due to
the network is very deep, the receptive field is usually as large as
the input image. However, as showed in Fig. 4(b), the valid recep-
tive field [49] still fails to cover every pixels on a certain person
part in sometimes. In this experiment, we insert the LSTM mod-
ule into the middle position between ResNet101 5b layer and 5c¢

1 http://liangchiehchen.com/projects/DeepLab.html.

Table 2

Experimental results of different numbers of diffusion layers on PASCAL-Person-Part
dataset. The ‘synf’ indicates BN synchronization when using multiple GPUs. Note
that all of the above accuracies are not the final results of the model, but the pre-
diction results of the LSTM module in the network.

Number of Layers  pixel acc. ¥ mloU %  syn' pixel acc. %  syn' mloU %
PDNs (1 layer) 93.0 61.6 95.4 65.2
PDNs (2 layers) 931 61.8 95.7 66.3
PDNs (3 layers) 93.3 62.4 95.9 67.1
PDNs (4 layers) 93.3 62.5 96.2 67.7

layer. With the number of neighbors growing, e.g., from 8 neigh-
bors in Fig. 4(c) to 24 neighbors in Fig. 4(d), the VRF of each site in
the score maps can be enlarged obviously. It demonstrates that the
proposed LSTM module can involve rich contexts among data ele-
ment and further promote the ability of global reasoning of each
site.

Performance ofdifferent diffusion layers. We evaluate the per-
formance of different diffusion layers to validate that informa-
tion diffusion can improve the discriminative ability of each site.
Table 2 shows the breakdown IoU results, and the improvement
can be observed by gradually adopting more diffusion layers. It
demonstrates that stacking multiple LSTM layers can effectively
diffuse the information on the feature maps and enhance the fea-
ture representation of each site for dense prediction. At the same
time, we can find that the margin between the third layer and the
fourth layer is small. Intuitively, we can assume that the informa-
tion has been effectively propagated in the feature maps in the
fourth layer. In practice, we insert the LSTM module into the mid-
dle position between ResNet101 5b layer and 5c layer, and add the
softmax classifier on the top of each diffusion layer. Thus the pre-
diction results in Table 2 are based on the output confidence maps
of different diffusion layers, but not the final results of the model.
The final segmentation accuracies of the full model are reported
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Table 3

The breakdown time consuming (millisecond per image) of each
model. The results are based on the average time cost of all im-
ages in the test set. The marks ‘1M’ and ‘2M’ indicate the num-
ber of diffused module inserted into ResNet101 architecture. Note
that LG-LSTM [9] in this table is our implementation by using
Resnet101 [7] as the bottom neural networks.

Method Res101 CRF LSTM Total
DeeplLab-v2 [22]  381ms 4773ms - 5154 ms
LG-LSTM [9] 381ms - 294ms  675ms
PDNs-1M 381 ms - 112 ms 493 ms
PDNs-2M 381ms - 224ms 605 ms
Table 4
Experimental results on ADE20K val set.
Method BaseNet BN Syn. pixel acc. %  mloU %
FCN [28] 69.05 24.86
DeeplLab [13] 71.06 27.08
Deeplab-v2 [7] Res101 75.09 35.07
Deeplab-v2+CRF [7] Res101 77.22 36.79
PSPNet [48] Res101 v 80.64 41.96
Grid-LSTM [20] 69.37 25.11
LG-LSTM [9] 69.91 25.79
LG-LSTM [9] Res101 7717 36.41
PDNs-8NB-1Module Res101 77.10 36.18
PDNs-24NB-1Module Res101 77.51 37.02
PDNs-24NB-2Modules Res101 7759 37.71
PDNs-8NB-1Module Res101 v 79.69 40.87
PDNs-24NB-1Module Res101 v 80.30 41.56
PDNs-24NB-2Modules  Res101 v 80.81 41.89

in Tables 4 and 5, which are calculated by up-sampling confidence
maps extracted from ResNet 5c layer 8 times.

Time consuming. Since the CRF-based post processing [22] also
considers the spatial dependence between different sites. In
Table 3, we report the time consuming of DeepLab-v2 [22] and var-
ious LSTM-based structures in test phase. Our PDNs can realize fast
computation in testing without requiring extra inference for solv-
ing CRF. At the same time, since the parameters of our model are
less than LG-LSTM, the total time consuming for testing is less as
well. Therefore, our approach is more suitable for large-scale se-
mantic parsing task.

5.2. Experiment results and comparisons

ADE20K dataset [8]. We compare our model with six seman-
tic parsing methods: FCN [28], Deeplab [13], Grid-LSTM [20],

LG-LSTM [9], DeepLab-v2 [22] and PSPNet [48]. These meth-
ods can be grouped into two categories: CNN-based meth-
ods: [13,22,28,48| and LSTM-based methods: [9,20]. The first cat-
egory employs convolution and pooling operations to directly ex-
tract the abstract feature representation. The second category uses
LSTM to construct short-distance and long-distance spatial depen-
dencies.

Since ADE20K dataset is a newly proposed large-scale scene
parsing dataset, all the results in Table 4 are given based on our
own implementation. All of the comparison methods have trained
200,000 iterations without any extra data. According to Table 4,
the proposed PDNs outperform the baseline method DeepLab-
v2(Res101) [22] in terms of pixel accuracy and mean IoU with
2.50% and 2.64% respectively. Compared with existing LSTM-based
methods, such as LG-LSTM(Res101) [9], our best configuration is
still able to achieve 1.3% promotion in terms of mean IoU. It well
demonstrates that incorporating the contextual information from
the larger range into representation learning can further enhance
the discriminative ability of deep features. Fig. 5 gives the vi-
sualization results of our method, DeepLab-v2(Res101) and LG-
LSTM(Res101). It is obvious that PDNs can effectively distinguish
similar objects in complex scenes by local and global reason-
ing. For fair comparison with state-of-the-art methods, we enlarge
the batchsize (i.e. 16 images) of proposed method by using BN
synchronization in the training phase. According to Table 4, our
method can achieve comparable segmentation accuracy compared
with PSPNet [48]. It even obtains slightly higher pixel accuracy
than PSPNet over all of the categories.

To strictly evaluate the effectiveness of using different num-
bers of spatial neighbors, we also report the performance of using
8 spatial neighbors and 24 spatial neighbors. We use the capital
‘NB’ to indicate the number of spatial neighboring connections for
each site. According to Table 4, ‘PDNs-24NB’ with 24 spatial neigh-
bors outperforms that with 8 neighbors by 0.84% over the met-
ric of mloU by using single GPU. By applying synchronized cross-
GPU batch normalization, the gap has further enlarged to 1.12%.
These results is in agreement with the experiment about valid re-
ceptive field. Additionally, we also find that embedding multiple
LSTM modules at different depths of the network can further im-
prove the performance of the model.

PASCAL-Person-Part dataset [23]. Table 5 shows the compar-
ison results with ten approaches [9,13,19-22,45,46,48,51] on the
metric of mean IoU. An obvious improvement, i.e. 2.5% increase by
PDNs over the DeepLab-v2(Res101) [22], can be observed from the
comparison on breakdown categories. In order to reflect the ad-

Table 5
Experimental results (IoU) on PASCAL-Person-Part set. T indicates BN synchronization.
Method head torso  u-arms  l-arms u-legs lI-legs  bkg. mloU
DeepLab [13] 78.1 54.0 373 36.9 33.7 29.6 929 518
HAZN [45] 80.8 59.1 431 42.8 39.0 34.5 93.6 56.1
Attention [46] - - - - - - - 56.4
ResNet [7] 85.1 68.4 50.9 51.2 46.7 394 956 624
ResNet + CRF [7] 84.2 68.8 51.2 52.2 46.8 394 953 626
Deeplab-v3f(Res101) [51]  87.7 72.7 571 58.1 53.4 51.7 97.6 68.3
PSPNetf(Res101) [48] 88.2 714 57.9 58.9 52.8 50.5 983 68.6
Grid-LSTM [20] 81.9 58.9 431 46.9 40.1 34.6 86.0 56.0
Diagonal BiLSTM [21] 82.7 60.6 45.0 47.6 42.0 373 88.1 57.6
LG-LSTM [9] 82.7 61.0 454 478 423 38.0 886 58.0
Graph-LSTM [19] 82.7 62.7 46.9 47.7 45.7 40.9 946  60.2
LG-LSTM (Res101) [9] 86.0 69.1 52.8 52.0 473 431 95.2 636
PDNs-8NB-1Module 85.7 68.4 52.6 51.9 46.6 429 953 633
PDNs-24NB-1Module 85.5 69.9 53.3 531 474 43.6 955  64.0
PDNs-24NB-2Modules 85.7 70.1 53.8 54.0 49.0 45.7 96.2 649
PDNs-24NB-1Module’ 871 73.9 56.9 56.7 52.0 514 980 679
PDNs-24NB-2Modules’ 884 74.5 56.1 571 53.5 50.1 986 683
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Fig. 5. Visualization of parsing results on ADE20K MIT dataset [8]. From left to right are input image, groundtruth labeling, parsing result by proposed PDNs, by LG-LSTM
(Res101) [9] and by DeepLab-v2 (Res101) [22]. All of the models are trained on single GPU. Best viewed in color.
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Fig. 6. Visualization of parsing results on PASCAL-Person-Part dataset [23]. From left to right are input image, groundtruth labeling, parsing result by proposed PDNs, by
LG-LSTM (Res101) [9] and by DeepLab-v2 (Res101) [22]. All of the models are trained on single GPU. Best viewed in color.

vantages of proposed PDNs in context modeling, we implement the
LG-LSTM [9] by adopting Resnet101 [7] as the bottom neural net-
works. Such model achieves mean IoU of 63.6%, which is still 1.3%
less than our best model. When the model is trained by using BN
synchronization, the mloU of our method is 68.3%, which is com-
parable with Deeplab-v3 [51] and PSPNet [48]. The visualization of
parsing results on this dataset are shown in Fig. 6.

6. Conclusion

This work presented Progressively Diffused Network (PDN) to
model the information propagation on the image plane. By adopt-
ing convolutional LSTM with special atrous filters, the stacked dif-
fusion layers make the context information from a certain site
spreading to a large range of the image in a few steps, which effec-
tively enlarge the valid receptive field of each site. This work has
demonstrated diffused layer is a simple yet effective module for
context propagation, where PDN outperforms previous LSTM based
methods without bells and whistles.

Future work will explore PDN in many other dense predication
tasks, such as instance object segmentation, crowd flow estimation
and so on. Moreover, how to accelerate PDN to deal with real-
time application is still an open issue. At last, combining proposed
method with other techniques, such as knowledge graph, is also an
exciting research direction.
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