
Larger Norm More Transferable: An Adaptive Feature Norm Approach for
Unsupervised Domain Adaptation

Ruijia Xu1 Guanbin Li1∗ Jihan Yang1 Liang Lin1,2

1School of Data and Computer Science, Sun Yat-sen University, China
2DarkMatter AI Research

xurj3@mail2.sysu.edu.cn liguanbin@mail.sysu.edu.cn jihanyang13@gmail.com linliang@ieee.org

Abstract

Domain adaptation enables the learner to safely gener-
alize into novel environments by mitigating domain shifts
across distributions. Previous works may not effectively un-
cover the underlying reasons that would lead to the dras-
tic model degradation on the target task. In this paper,
we empirically reveal that the erratic discrimination of the
target domain mainly stems from its much smaller feature
norms with respect to that of the source domain. To this
end, we propose a novel parameter-free Adaptive Feature
Norm approach. We demonstrate that progressively adapt-
ing the feature norms of the two domains to a large range
of values can result in significant transfer gains, implying
that those task-specific features with larger norms are more
transferable. Our method successfully unifies the computa-
tion of both standard and partial domain adaptation with
more robustness against the negative transfer issue. With-
out bells and whistles but a few lines of code, our method
substantially lifts the performance on the target task and ex-
ceeds state-of-the-arts by a large margin (11.5% on Office-
Home [45] and 17.1% on VisDA2017 [31]). We hope our
simple yet effective approach will shed some light on the
future research of transfer learning. Code is available
at https://github.com/jihanyang/AFN .

1. Introduction
Deep neural networks, driven by numerous labeled sam-

ples, have made remarkable progress in a wide range of

computer vision tasks. However, those models are very vul-

nerable to generalize into new application scenarios. Even a

subtle deviation from the training regime can lead to a dras-

tic degradation of the model [43, 49]. Therefore, with the

strong motivation to safely transfer knowledge from a label-

rich source domain to an unlabeled target domain, Unsuper-

vised Domain Adaptation (UDA) attempts to train a classi-
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Figure 1: Feature visualization of source and target samples

on the Source Only model. This technique is widely used to

characterize the feature embeddings under the softmax-related

objectives [47, 21, 51]. Specifically, we set the task-specific

features to be two-dimensional and retrain the model. Unlike

t-SNE [27] whose size of empty space does not account for

the similarity between the two data points, this visualization

map enables us to interpret the size of feature norms as well

as inter-class and intra-class variances. As illustrated, target

samples tend to collide in the small-norm (i.e., low-radius) re-

gions which are vulnerable to slight angular variations of the

decision boundaries and lead to erratic discrimination.

fier using source samples that can generalize well to the tar-

get domain while mitigating the domain shift between the

two underlying distributions.

Under the guidance of the theoretical upper bound in [1],

the key idea of most existing DA algorithms is to capture not

only the task-discriminative but the domain-invariant repre-

sentations by simultaneously minimizing the source error

and some specific statistical discrepancy across the two do-

mains, e.g., H-divergence [1, 9, 43], HΔH-divergence [1,

35], Maximum Mean Discrepancy (MMD) [3, 44, 23], cor-

relation distance [39, 40] and etc.

Adversarial domain adaptation [9, 43, 35, 17, 36, 20, 5,



4, 32], which seeks to minimize an approximate domain dis-

crepancy with an adversarial objective, has recently evolved

into a dominant method in this field. To the best of our

knowledge, RevGrad [9] is the pioneer to empirically mea-

sure the H-divergence by a parametric domain discrimina-

tor and adversarially align the features via reverse gradient

backpropagation. ADDA [43] instead facilitates the adver-

sarial alignment with GAN-based objective in an asymmet-

ric manner. MCD [35] places a min-max game between the

feature generator and the two-branch classifiers to reduce

the HΔH-divergence. On par with the feature-level align-

ment, generative pixel-level adaptation [17, 36, 20, 4, 32]

utilizes Image-to-Image translation techniques to capture

the low-level domain shifts.

While the notion of model degradation has been well rec-

ognized within the DA community [43, 49], little research

work has been published to analyze the underlying cause of

this phenomenon. Thus, existing statistic divergences may

fail to precisely depict the domain shift and bridging such

discrepancies may not guarantee the safe transfer across do-

mains. For example, Shu et al. [37] verify that bridging

Jensen–Shannon divergence between the two domains does

not imply high accuracy on the target task. In this paper,

we take a step towards unveiling the nature of model degra-

dation from a solid empirical observation, which is high-

lighted by Fig. 1. This visualization map suggests that the

excessively smaller norms of target-domain features with

respect to that of the source domain account for their erratic

discrimination. However, there remain two hypothetical in-

terpretations from the current observation:

1) Misaligned-Feature-Norm Hypothesis: The domain

shift between the source and target domains relies on their

misaligned feature-norm expectations. Matching the mean

feature norms of the two domains to an arbitrary shared

scalar is supposed to yield similar transfer gains.

2) Smaller-Feature-Norm Hypothesis: The domain shift

substantially relies on the excessively less-informative fea-

tures with smaller norms for the target task. Despite non-

rigorous alignment, adapting the target features far away

from the small-norm regions can lead to safe transfer.

With these points in mind, we introduce our parameter-

free Adaptive Feature Norm (AFN) approach. First, we pro-

pose a simple yet effective statistic distance to characterize

the mean-feature-norm discrepancy across domains. Sec-

ond, we design the Hard AFN to bridge this domain gap by

restricting the expected feature norms of the two domains to

approximate a shared scalar. It suggests that norm-aligned

features can bring effective transfer yet the results can be

further improved with a larger scalar. To explore a more

sufficient large feature norm in a stable way, we propose

the Stepwise AFN to encourage a progressive feature-norm

enlargement for each individual sample across domains. As

stepwise AFN reveals, the key to achieving successful trans-

fer is to properly lift the target samples towards the large-

norm regions while the rigorous alignment is superfluous.

This innovative discovery inspires us to revisit what fea-

tures are transferable. We recognize that those task-specific

features with larger norms imply more informative transfer-

ability. Similar findings are explored in the field of model

compression in terms of the smaller-norm-less-informative

assumption [48], which suggests that parameters or features

with smaller norms play a less informative role during the

inference. Like the two sides of a coin, in contrast to the

model compression that prunes unnecessary computational

elements or paths, we place the larger-norm constraint upon

the task-specific features to facilitate the more informative

and transferable computation on the target domain.

It is noteworthy that under the partial DA, the nega-

tive transfer is caused not only from the unrelated samples

within the shared categories but also from the unrelated data

from the source outlier categories. To this end, we propose

meaningful protocols to evaluate the robustness w.r.t a spe-

cific algorithm to defense against these potential risks of

negative transfer. With thorough evaluation, it reveals that

our fairly novel feature-norm-adaptive manner is more ro-

bust to safely transfer knowledge from the source domain.

We summarize our contributions as follows:

i) We empirically unveil the nature of model degrada-

tion from a solid observation that the excessively smaller

norms of the target-domain features with respect to that of

the source domain account for their erratic discrimination.

ii) We propose a novel AFN approach for UDA by pro-

gressively adapting the feature norms of the two domains to

a large range of scalars. Our approach is fairly simple yet

effective and is translated into a few lines of code.

iii) We succeed in unifying the computation for both

vanilla and partial DA and the feature-norm-adaptive man-

ner is more robust to defense against the negative transfer.

iv) Extensive experimental results have demonstrated

the promise of our approach by exceeding state-of-the-arts

across a wide range of visual DA benchmarks.

2. Related Work
Domain adaptation [30, 33, 41] generalizes the learner

across different domains by mitigating the domain shift

problem. Supervised DA [42, 29, 28] exploits a few labeled

data in the target domain while unsupervised DA has no ac-

cess to that. We focus on the latter scenario in our paper.

Under the guidance of the theoretical upper bound pro-

posed in [1], existing methods explore domain-invariant

structures by minimizing some specific statistic distances

between the two domains. For example, Maximum Mean

Discrepancy (MMD) [3] based methods [23, 26, 44] learn

transferable features by minimizing the MMD of their ker-

nel embeddings. Deep correlation alignment [40] pro-

poses to match the mean and covariance of the two distri-



butions. [1] introduces H- and HΔH-divergence to char-

acterize the domain discrepancy, which are further devel-

oped into matching the corresponding deep representations

by [9, 43] and [35] respectively. Regarding the method-

ology, kernel-based DA [13, 12, 23, 26] and adversarial

DA [9, 43, 35, 17, 36, 20, 4, 32] are widely-used in the field.

Inspired by GANs [14], adversarial DA involves a sub-

network as the domain classifier to discriminate features of

different domains while the deep learner tries to generate

the features that deceive the domain classifier. For example,

RevGrad [9] utilize a parametric subnetwork as the domain

discriminator and adversarially align the features via reverse

gradient backpropagation. ADDA [43] instead facilitates

the adversarial alignment with GAN-based objectives in an

asymmetric manner. MCD [35] conducts a min-max game

between the feature generator and the two-branch classifiers

in order to reduce the HΔH-divergence. On par with the

feature-level adversarial alignment, generative pixel-level

adaptation [17, 36, 20, 4, 32] utilizes Image-to-Image trans-

lation techniques to capture the low-level domain shifts.

In addition, other methods are proposed to learn target-

specific structures. DRCN [11] involves a reconstruction

penalty on target samples. [34] utilizes tri-training to obtain

target pseudo labels. [37] refines the target decision bound-

ary based on the cluster assumption. iCAN [50] iteratively

applies sample selection on pseudo-labeled target samples

and retrains the network.

Standard domain adaptation assumes that the two do-

mains share the identical label space. [6, 7] further open up

the partial setting where source label space subsumes the

target one, However, it is not trivial to directly migrate the

current models in the standard DA as they are prone to suf-

fer from the negative transfer effect. PADA [7] attempts to

alleviate this issue by detecting and down-weighting sam-

ples belonging to the source outlier classes.

3. Method

3.1. Preliminaries

Given a source domain Ds = {(xs
i , y

s
i )}ns

i=1 of ns la-

beled samples associated with |Cs| categories and a target

domain Dt = {xt
i}nt

i=1 of nt unlabeled samples associated

with |Ct| categories. DA occurs when the underlying distri-

butions corresponding to the source and target domains in

the shared label space are different but similar [2] to make

sense the transfer. Unsupervised DA considers the scenario

that we have no access to any labeled target examples.

Vanilla Setting Under this setting, the source and target

domains share the identical label space, i.e., Cs = Ct.
Partial Setting The source label space subsumes the tar-

get one, i.e., Cs ⊃ Ct. The source labeled data belonging to

the outlier categories Cs\Ct are unrelated to the target task.

C2

C1
Input: Xs + Xt

Xs: Source samples
Xt: Target samples
Ys: Source labels

G

G: Backbone Network
F: Classifier

Classification Loss
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L2
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Figure 2: The overall framework of our proposed Adaptive

Feature Norm approach. The backbone network G denotes the

general feature extraction module. F is employed as the task-

specific classifier with l layers, each of which is organized in

the FC-BN-ReLU-Dropout order. During each iteration, we

apply the feature norm adaptation upon the task-specific fea-

tures along with the source classification loss as our optimiza-

tion objective. For the Hard variant of AFN, the mean feature

norms of source and target samples are constrained to a shared

scalar. For the Stepwise variant, we encourage a progressive

feature-norm enlargement with respect to each individual ex-

ample at the step size of Δr. To this end, far away from the

small-norm regions after the adaptation, the target samples can

be correctly classified without any supervision.

3.2. L2-preserved Dropout

In this part, we first prove that the standard Dropout op-

erator is L1-preserved. As our algorithm is computed based

on the L2 norms of the hidden features, we introduce the

following L2-preserved Dropout operation to meet our goal.

Dropout is a widely-used regularization technique in

deep neural networks [38, 18]. Given a d-dimensional in-

put vector x, in the training phase, we randomly zero the

element xk, k = 1, 2,. . . , d with probability p by samples

ak ∼ P that are generated from the Bernoulli distribution:

P (ak) =

{
p, ak = 0

1− p, ak = 1
(1)

To compute an identity function in the evaluation stage, the

outputs are further scaled by a factor of 1
1−p and thus

x̂k = ak
1

1− p
xk , (2)

which implicitly preserves the L1-norm in both of the train-

ing and evaluation phases since xk and ak are independent:

E[|x̂k|] = E[|ak 1

1− p
xk|] = 1

1− p
E[ak]E[|xk|] = E[|xk|] .

(3)

However, as we are in pursuit of adaptive L2 feature norm,

we instead scale the output by a factor of 1√
1−p

and obtain

x̂k = ak
1√
1− p

xk , (4)



which satisfies

E[|x̂k|2] = E[|ak
1√
1− p

xk|2] = 1

1− p
E[a2

k]E[|xk|2] = E[|xk|2] .
(5)

3.3. Framework

As indicated in Fig. 2, our framework consists of a back-

bone network G and a classifier F . Existing findings reveal

that deep features eventually transit from general to specific

along the network and feature transferability significantly

drops in higher layers [49]. In our case, G is regarded as

the general feature extraction module that inherits from the

prevailing network architecture such as ResNet [16]. F rep-

resents the task-specific classifier that has l fully-connected

layers. We denotes the first l − 1 layers of the classifier

as Ff , which results in the so-called bottleneck feature em-

beddings f [7, 26]. Those features computed by Ff depend

greatly on the specific domain and are not safely transfer-

able to a novel domain. Eventually, we calculate the class

probabilities along the last layer Fy , which is followed by a

softmax operator. We denote the parameters of G, Ff , Fy

with θg , θf and θy respectively. Our intention is to explore

an adaptive algorithm to compute the domain-transferable

features f = Ff (G(·)) using only source domain supervi-

sion. On the other side, as we are unifying the computation

with respect to both vanilla and partial DA, it raises an in-

terleaving challenge to defense against the negative transfer

effect caused by the outlier categories in the source domain.

3.4. Hard Adaptive Feature Norm

Based on our Misaligned-Feature-Norm Hypothesis, we

propose the Maximum Mean Feature Norm Discrepancy

(MMFND) to characterize the mean-feature-norm distance

between the two distributions and verify whether bridging

this statistical domain gap can result in appreciable trans-

fer gains. MMFND is defined by Eq. (6), where the func-

tion class H is the combination of all the possible functions

composited by the L2-norm operator with the deep repre-

sentation module, i.e., h(x) = (‖·‖2 ◦ Ff ◦G)(x).

MMFND[H,Ds,Dt] := sup
h∈H

(
1

ns

∑

xi∈Ds

h(xi)− 1

nt

∑

xi∈Dt

h(xi)) .

(6)

Intuitively, the functions class H are rich enough to con-

tain substantial positive real valued functions on the input x
and the upper bound will greatly deviate from zero if there

is no restriction on the function type. In order to avoid this

happening, we place a restrictive scalar R to match the cor-

responding mean feature norms. By restricting both the

mean feature norms of the two domains respectively con-

verging towards the shared equilibrium R, the domain gap

in terms of MMFND will vanish to zero. We implement this

via the Hard Adaptive Feature Norm (HAFN) algorithm,

which is illustrated by Eq. (7).

C1(θg, θf , θy) =
1

ns

∑

(xi,yi)∈Ds

Ly(xi, yi)

+λ(Ld(
1

ns

∑

xi∈Ds

h(xi), R) + Ld(
1

nt

∑

xi∈Dt

h(xi), R)) .

(7)

The optimization objective consists of two terms: the

source classification loss Ly in order to obtain the task-

discriminative features by minimizing the softmax cross

entropy on the source labeled samples, which is indi-

cated by Eq. (8), where p =
[
p1, . . . , p|Cs|

]
is the soft-

max of the activations predicted by the classifier, i.e.,

p = softmax(F (G(x))); the feature-norm penalty in or-

der to obtain the domain-transferable features by minimiz-

ing the feature-norm discrepancy between the two domains,

where Ld(·, ·) is taken as the L2-distance and λ is a hyper-

parameter to trade off the two objectives.

Ly(x
s
i , y

s
i ; θg, θf , θy) = −

|Cs|∑
k=1

1[k=ys
i ]
log pk . (8)

Simple yet effective, MMFND appears to be a novel and

superior statistical distance to characterize the cross-domain

shift. And by bridging this feature-norm discrepancy with

only source-domain supervision through executing HAFN,

we can finally achieve the task-discriminative as well as

domain-transferable features.

However, the preference setting of R still remains un-

settled. As the Misaligned-Feature-Norm Hypothesis sug-

gests, matching feature-norm expectations of the two do-

mains to an arbitrary shared positive real value is supposed

to yield similar transfer gains. But this assertion is found not

to be true by our empirical results. Specifically, although re-

stricting the mean feature norms of the two domains to even

a fairly small value (e.g., R = 1, that is, feature normaliza-

tion) has shown effective results, however, with R gradu-

ally increases, the obtained models are still prone to achieve

higher accuracies on the target task. To this end, it is natural

to explore a sufficiently large R and verify whether the rig-

orous alignment between the feature-norm expectations is

necessary, which is revealed by our Smaller-Feature-Norm

Hypothesis. In fact, it is unfortunate that HAFN fails to

set an extremely large R as the gradients generated by the

feature-norm penalty may eventually lead to an explosion.

3.5. Stepwise Adaptive Feature Norm

To break the aforementioned bottleneck, we introduce an

improved variant called Stepwise Adaptive Feature Norm

(SAFN) in order to encourage the model to learn task-

specific features with larger norms in a progressive manner,



Table 1: Accuracy (%) on Office-Home under vanilla setting (ResNet-50)

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet [16] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN [23] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

DANN [10] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN [26] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN* [24] 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8

HAFN 50.2±0.2 70.1±0.2 76.6±0.3 61.1±0.4 68.0±0.1 70.7±0.2 59.5±0.2 48.4±0.3 77.3±0.2 69.4±0.0 53.0±0.6 80.2±0.3 65.4

SAFN 52.0±0.1 71.7±0.6 76.3±0.3 64.2±0.3 69.9±0.6 71.9±0.6 63.7±0.4 51.4±0.2 77.1±0.0 70.9±0.4 57.1±0.1 81.5±0.0 67.3
SAFN* 54.4 73.3 77.9 65.2 71.5 73.2 63.6 52.6 78.2 72.3 58.0 82.1 68.5

Table 2: Accuracy (%) on VisDA2017 under vanilla setting (ResNet-101)

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class

ResNet [16] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

DAN [23] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1

DANN [10] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

MCD [35] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

HAFN 92.7±0.7 55.4±4.1 82.4±2.6 70.9±1.2 93.2±0.9 71.2±3.9 90.8±0.5 78.2±1.3 89.1±0.7 50.2±2.4 88.9±0.8 24.5±0.5 73.9

SAFN 93.6±0.2 61.3±4.0 84.1±0.5 70.6±2.2 94.1±0.5 79.0±4.1 91.8±0.5 79.6±1.3 89.9±0.7 55.6±3.4 89.0±0.3 24.4±2.9 76.1

which is indicated by Eq. (9) as follows:

C2(θg, θf , θy) =
1

ns

∑

(xi,yi)∈Ds

Ly(xi, yi)

+
λ

ns + nt

∑

xi∈Ds∪Dt

Ld(h(xi; θ0) + Δr, h(xi; θ)) ,

(9)

where θ = θg ∪ θf . θ0 and θ represent the updated and

updating model parameters in the last and current iterations

respectively. Δr denotes the positive residual scalar to con-

trol the feature-norm enlargement. During each iteration,

the second penalty in SAFN encourages a feature-norm en-

largement at the step size of Δr with respect to individ-

ual examples, based on their feature norms calculated by

the past model parameters in the last iteration. Instead of

assigning a hard value, SAFN enables the optimization pro-

cess more stable and fairly easy to trade off between the two

objectives. To this end, executing SAFN can lead to higher

accuracies on the target task by generating more informative

features with larger norms. It is noteworthy that SAFN does

not rigorously bridge the mean-feature-norm discrepancy,

yet one can alternatively place a terminal R to restrict the

endless enlargement, which is indicated by Eq. (10). How-

ever, our empirical results revealed that Eq. (10) has slightly

different result as to replace the second term in Eq. (9).

As the Smaller-Feature-Norm hypothesis suggests, once we

properly adapt the target samples towards the large-norm

regions, the rigorous alignment becomes superfluous.

Ld(max(h(xi; θ0) + Δr,R), h(xi; θ)) . (10)

3.6. Model Robustness Evaluation

Though the notion of negative transfer has been well rec-

ognized within the DA community [30], its rigorous defini-

tion is still unclear [46]. A widely accepted description of

negative transfer [30] is stated as “transferring knowledge
from the source can have a negative impact on the target
learner”. While intuitive, how to evaluate it still remains

open. Inspired by [46], we propose meaningful protocols

to evaluate the robustness of a given algorithm especially

under the more general partial setting. It is noteworthy that

in this setting, the negative transfer is caused not only from

the unrelated samples within the shared categories but also

from the unrelated data from the source outlier classes. Let

Al%
T|Ct|

, AS|Ct|→T|Ct| and AS|Cs|→T|Ct| denote the accuracies

by using just l% target labeled data, transferring without

and with source outlier classes w.r.t an identical algorithm.

We define i) Al%
T|Ct|

− AS|Ct|→T|Ct| (Closed Negative Gap,

CNG): the negative impact occurs if the algorithm cannot

obtain more transfer gains over the negative influences from

another domain than even just labeling a few (e.g., 1%) tar-

get data, which is valueless when deployed in the wild. ii)

AS|Ct|→T|Ct| −AS|Cs|→T|Ct| (Outlier Negative Gap, ONG):

especially measures the negative influences that are caused

by the source unrelated categories. iii) Al%
T|Ct|

−AS|Cs|→T|Ct|
(Partial Negative Gap, PNG): reveals whether it is valuable

for an algorithm to access and transfer from those available

large domains with the potential risks of CNG and ONG.

We say that the negative effect exceeds the positive gains

once the gap value is positive and vice versa. The larger ab-

solute value suggests more desperate negative influences or

more encouraging positive gains.

4. Experiment

4.1. Setup

VisDA2017 [31] is the challenging large-scale bench-

mark that attempts to bridge the significant synthetic-to-



Table 3: Accuracy (%) on ImageCLEF-DA in vanilla setting

Method I→P P→I I→C C→I C→P P→C Avg

ResNet-50 [16] 74.8 83.9 91.5 78.0 65.5 91.2 80.7

DAN [23] 74.5 82.2 92.8 86.3 69.2 89.8 82.5

DANN [10] 75.0 86.0 96.2 87.0 74.3 91.5 85.0

JAN [26] 76.8 88.0 94.7 89.5 74.2 91.7 85.8

CDAN* [24] 76.7 90.6 97.0 90.5 74.5 93.5 87.1

HAFN 76.9 89.0 94.4 89.6 74.9 92.9 86.3

±0.4 ±0.4 ±0.1 ±0.6 ±0.2 ±0.1

SAFN 78.0 91.7 96.2 91.1 77.0 94.7 88.1

±0.4 ±0.5 ±0.1 ±0.3 ±0.5 ±0.3

SAFN+ENT 79.3 93.3 96.3 91.7 77.6 95.3 88.9
±0.1 ±0.4 ±0.4 ±0.0 ±0.1 ±0.1

SAFN+ENT* 80.2 93.8 96.7 92.8 78.4 95.7 89.6

Table 4: Accuracy (%) on Office-31 under vanilla setting

Method A→W D→W W→D A→D D→A W→A Avg

ResNet-50 [16] 68.4 96.7 99.3 68.9 62.5 60.7 76.1

DAN [23] 80.5 97.1 99.6 78.6 63.6 62.8 80.4

DANN [10] 82.0 96.9 99.1 79.7 68.2 67.4 82.2

ADDA [43] 86.2 96.2 98.4 77.8 69.5 68.9 82.9

JAN [26] 85.4 97.4 99.8 84.7 68.6 70.0 84.3

GTA [36] 89.5 97.9 99.8 87.7 72.8 71.4 86.5

CDAN* [24] 93.1 98.2 100.0 89.8 70.1 68.0 86.6

HAFN 83.4 98.3 99.7 84.4 69.4 68.5 83.9

±0.7 ±0.1 ±0.1 ±0.7 ±0.5 ±0.3

SAFN 88.8 98.4 99.8 87.7 69.8 69.7 85.7

±0.4 ±0.0 ±0.0 ±1.3 ±0.4 ±0.2

SAFN+ENT 90.1 98.6 99.8 90.7 73.0 70.2 87.1
±0.8 ±0.2 ±0.0 ±0.5 ±0.2 ±0.3

SAFN+ENT* 90.3 98.7 100.0 92.1 73.4 71.2 87.6

real domain gap with over 280K images across 12 object

categories. The source domain has 152,397 synthetic im-

ages generated by rendering from 3D models. The target

domain has 55,388 real object images collected from Mi-
crosoft COCO [19]. Under the partial setting, we follow [7]

to choose (in alphabetic order) the first 6 categories as target

categories and conduct the Synthetic-12 → Real-6 task.

Office-Home [45] is another challenging dataset that

collects images of everyday objects to form four domains:

Artistic images (Ar), Clipart images (Cl), Product images

(Pr) and Real-World images (Rw). Each domain contains

65 object categories and they amount to around 15,500 im-

ages. Under the partial setting, we follow [7] to choose (in

alphabetic order) the first 25 categories as target categories.

Office-31 [33] is a widely-used benchmark for visual

DA. It contains 4,652 images of 31 office environment cat-

egories from three domains: Amazon (A), DSLR (D) and

Webcam (W), which correspond to online website, digital

SLR camera and web camera images respectively.

ImageCLEF-DA is built for ImageCLEF 2014 domain

adaptation challenge1 and consists of 12 common categories

shared by three public datasets: Caltech-256 (C), ImageNet

1http://imageclef.org/2014/adaptation

ILSVRC2012 (I) and Pascal VOC 2012 (P). There are 50

images in each category and 600 images in each domain.

Implementation Details We follow the standard proto-

col [23, 35, 9, 10, 7, 26, 43] to utilize all labeled source data

and unlabeled target data that belongs to their own label

spaces. We implement our experiments on the widely-used

PyTorch2 platform. For fair comparison, our backbone net-

work is identical to the competitive approaches and is also

fine-tuned from the ImageNet [8] pre-trained model. We

adopted a unified set of hyper-parameters throughout the

Office-Home, Office-31 and ImageCLEF-DA datasets under

both settings, where λ = 0.05, R = 25 in HAFN and Δr =
1.0 in SAFN. Since the synthetic domain on VisDA2017 is

easy to converge, we applied a slightly smaller λ and Δr
that equal to 0.01 and 0.3 respectively. We used mini-batch

SGD optimizer with learning rate 1.0× 10−3 on all bench-

marks. We used center-crop images for the reported re-

sults. For each transfer task, we reported the average ac-

curacy over three random repeats. For fairer comparison

with those methods [7, 24] which used ten-crop images at

the evaluation phase with the best-performing models, we

also included our corresponding results with the notion of

{method}* to benefit the future comparisons.

4.2. Result Analysis

Results on Office-Home, VisDA2017, ImageCLEF-DA
and Office-31 under the vanilla setting are reported in Ta-

ble 1, 2, 3, 4 respectively. Results on Office-Home and

VisDA2017 under the partial setting are reported in Ta-

ble 5, 7. Robustness evaluations in terms of CNG, ONG

and PNG are shown in Table 6. As illustrated, our methods

significantly outperform the state-of-the-arts throughout all

experiments, where SAFN is the top-performing variant.

Results on VisDA2017 reveal some interesting observa-

tions: i) Adversarial based models such as DANN may not

effectively learn a diverse transformation across domains

on this extremely large-scale transfer task and is prone to

suffer from the risk of mode mismatch. However, our en-

couraging results prove the efficacy of AFN to work rea-

sonably on this large-scale dataset and bridge the significant

synthetic-to-real domain gap. ii) Note that existing methods

usually mix and optimize multiple learning objectives, and

it is not always easy to get an optimal solution. For exam-

ple, MCD [35] incorporates another class balance objective

to align target samples in a balanced way. Nevertheless, our

method yields superior performance on most categories, re-

vealing that it is robust to the unbalanced issue without any

other auxiliary constraint. iii) Our model is parameter-free

thus is more lightweight than the compared methods.

As indicated in Table 1, 3 and 4, our methods achieve

new state-of-the-arts on these three benchmarks, and with

larger rooms of improvement for those hard transfer tasks,

2https://pytorch.org/



Table 5: Accuracy (%) on Office-Home under partial setting (ResNet-50)

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet [16] 38.57 60.78 75.21 39.94 48.12 52.90 49.68 30.91 70.79 65.38 41.79 70.42 53.71

DAN [23] 44.36 61.79 74.49 41.78 45.21 54.11 46.92 38.14 68.42 64.37 45.37 68.85 54.48

DANN [10] 44.89 54.06 68.97 36.27 34.34 45.22 44.08 38.03 68.69 52.98 34.68 46.50 47.39

PADA* [7] 51.95 67.00 78.74 52.16 53.78 59.03 52.61 43.22 78.79 73.73 56.60 77.09 62.06

HAFN
53.35 72.66 80.84 64.16 65.34 71.07 66.08 51.64 78.26 72.45 55.28 79.02 67.51

±0.44 ±0.53 ±0.50 ±0.48 ±0.30 ±1.04 ±0.68 ±0.42 ±0.51 ±0.13 ±0.37 ±0.19

SAFN
58.93 76.25 81.42 70.43 72.97 77.78 72.36 55.34 80.40 75.81 60.42 79.92 71.83
±0.50 ±0.33 ±0.27 ±0.46 ±1.39 ±0.52 ±0.31 ±0.46 ±0.78 ±0.37 ±0.83 ±0.20

SAFN* 60.00 77.92 83.32 72.91 74.57 79.13 73.09 57.43 82.11 77.87 61.79 82.58 73.56

Table 6: Evaluation on the Robustness

Method
Ar → Rw (5%) Cl → Rw (5%) Pr → Rw (5%) VisDA2017 (1%)

CNG ONG PNG CNG ONG PNG CNG ONG PNG CNG ONG PNG

DAN [23] -14.6 13.8 -0.8 -4.9 24.5 19.6 -12.0 17.3 5.3 18.7 25.0 43.7

DANN [10] -17.2 21.9 4.7 -10.9 39.4 28.5 -14.5 19.5 5.0 13.6 26.7 40.3

JAN [26] -15.3 13.1 -2.2 -7.1 19.1 12.0 -13.4 12.2 -1.2 20.4 24.5 44.9

PADA [7] -17.2 12.2 -5.0 -10.9 25.6 14.7 -14.5 9.4 -5.1 13.6 24.2 37.8

SAFN -18.1 8.5 -9.6 -13.6 8.2 -5.4 -16.1 7.7 -8.4 5.0 15.6 20.6

Table 7: Accuracy (%) on VisDA2017 under partial setting

Method Synthetic-12→Real-6

ResNet-50 [16] 45.26

DAN [23] 47.60

DANN [10] 51.01

PADA* [7] 53.53

HAFN 65.06±0.90

SAFN 67.65±0.51

SAFN* 70.67

e.g., D → A, A → D, Cl → Pr, Cl → Rw and etc, where the

source and target domains are substantially different.

As illustrated in Table 5 and 7, our models obtain sub-

stantial improvements for partial DA, with 11.5% gain on

Office-Home and 17.1% gain on VisDA2017. Plain domain-

adversarial networks, e.g., DANN, seriously suffer from

the mismatch from the source outlier classes and perform

even worse than the Source Only variant. An intuitive so-

lution, e.g., PADA [7], is to detect and down-weight the

outlier categories during the domain alignment. However,

without any heuristic reweighting mechanism, our feature-

norm-adaptive manner exhibits stronger robustness against

the unrelated data from the source domain. We testify this

point via more thorough evaluation in Table 6. Besides, our

method works stably and does not require to adjust differ-

ent hyper-parameters for different subtasks within the same

dataset as was done in PADA.

We carefully conduct robustness evaluation for the most

challenging transfer tasks, e.g., Ar65 → Rw25, Synthetic-

12 → Real-6 and etc. As described in Section 3.6, the pos-

itive gap implies more negative impacts over the positive

gains and vice versa. The target labeled ratio is 5% and

1% for the two benchmarks. Results in Table 6 reveal some

interesting observations: i) Throughout all evaluation met-

rics on all transfer tasks, we can either achieve the largest

transfer gains or smallest negative influences. ii) All the

methods, including ours, are inevitable to the positive ONG

under the more challenging partial setting, while SAFN al-

leviates the outlier negative impact to the utmost extent. iii)

For the Cl → Rw transfer task, the comparison methods all

have positive PNG, suggesting that they are unable to ob-

tain more transfer gains from the Cl65 domain than using

only 5% Rw25 labeled samples. However, we still derive

encouraging result in this task. iv) It is noteworthy that on

the most challenging VisDA2017 dataset with the significant

synthetic-to-real gap, current approaches, including ours,

all fail to distill more positive knowledge from the synthetic

domain than just labeling 1% real samples. It remains a big

challenge for the future development of DA community.

5. Ablation Study
Feature Visualization: Although testifying the efficacy

of a DA algorithm via t-SNE [27] embeddings is consid-

ered over-interpreted,3 we still follow the de facto practice

to provide the intuitive understanding. We randomly select

2000 samples across 12 categories from the source and tar-

get domains on VisDA2017 and visualize their task-specific

features by t-SNE. As shown in Fig. 4(a), the ResNet fea-

tures of target samples collide into a mess because of ex-

tremely large synthetic-to-real domain gap. After adapta-

tion, as illustrated in Fig. 4(b), our method succeeded in

separating target domain samples and better aligning them

to the corresponding source domain clusters.

Sample Size of Target Domain: In this part, we empir-

ically demonstrate that our approach is scalable and data-

driven with respect to the increase of unlabeled target sam-

3https://interpretablevision.github.io/



(a) Sample Size (b) Sensitivity of R (c) Sensitivity of Δr (d) Embedding Size

Figure 3: Analysis of (a) varying unlabeled target sample size; (b)(c) parameter sensitivity of R and Δr; (d) varying embedding size.

(a) Source Only (b) SAFN

Figure 4: (a) and (b) correspond to the t-SNE embedding visu-

alization of the Source Only and SAFN models on VisDA2017.

The triangle and star markers denote the source and target sam-

ples respectively. Different colors indicate different categories.

ples, which exposes the appealing capacity in practice. It

is not necessarily intuitive for adversarial learning based

methods to optimize and obtain a diverse transformation

upon large volumes of unlabeled target samples. Specifi-

cally, we shuffle the target domain on VisDA2017 and se-

quentially access the top 25%, 50%, 75% and 100% of the

dataset. We train and evaluate our approach on these four

subsets. As illustrated in Fig. 3(a), with the sample size

gradually increases, the classification accuracy of the corre-

sponding target domain grows accordingly. It shows that the

more unlabeled target data are involved in the feature norm

adaptation, the more transferable classifier can be obtained.

Complementary with Other Methods: In this part, we

demonstrate that our approach can be used in combination

with other DA techniques. Because of limited space, we

particularly exploit ENTropy minimization (ENT) [15], a

low-density separation technique, for demonstration. ENT
is widely applied in DA community [25, 37, 22] to encour-

age the decision boundary to pass through the target low-

density regions by minimizing the conditional entropy of

target samples. We conduct this case study on ImageCLEF-
DA and Office-31 datasets and report the accuracies in Ta-

ble 3 and 4 respectively. As indicated, with ENT to fit the

target-specific structure, we further boost the recognition

performance by 0.8% and 1.4% on these two datasets.

Sensitivity of R and Δr: We conduct case studies to

investigate the sensitivity of parameter R in HAFN and pa-

rameter Δr in SAFN. We select VisDA2017 and task A→W

for demonstration. The results are shown in Fig. 3(b) and

Fig. 3(c), by varying R ∈{5, 10, 15, 20, 25, 30, 35} on

both datasets, Δr ∈ {0.2, 0.3, 0.4, 0.5} on VisDA2017 and

Δr ∈ {0.5, 1.0, 1.5, 2.0} on task A→W. For parameter R,

the accuracy first gradually increases with larger values of

R and then begins to decrease as the feature-norm penalty

in HAFN may explode. As shown in Fig. 3(c), the accura-

cies stay almost the same as parameter Δr varies, revealing

that SAFN works reasonably stable on these two tasks.

Sensitivity of Embedding Size: We investigate the sen-

sitivity of embedding size of the task-specific features as

it plays a significant role in norm computation. We con-

duct this case study on both VisDA2017 and A→W transfer

tasks. We report the average accuracy over three random

repeats for those embedding sizes varying in {500, 1000,

1500, 2000}. As illustrated in Fig. 3(d), the accuracy stays

almost the same and achieves slightly higher when the em-

bedding size is set to 1000, indicating that our approach is

robust to a wide range of feature space dimensions.

6. Conclusion

We have presented an innovative discovery for UDA,

revealing that the model degradation on the target domain

mainly stems from its much smaller feature norms with re-

spect to that of the source domain. To this end, we demon-

strated that progressively adapting the feature norms of the

two domains to a large range of values can result in signif-

icant transfer gains, implying that those task-specific fea-

tures with larger norms are more transferable. Our method

is parameter-free, easy to implement and performs sta-

bly. In addition, we successfully unify the computation of

both standard and partial DA, and thorough evaluations re-

vealed that our feature-norm-adaptive manner is more ro-

bust against the negative transfer. Extensive experimental

results have validated the virtue of our proposed approach.
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