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Abstract

Low-resource automatic speech recognition (ASR) is chal-
lenging, as the low-resource target language data cannot well
train an ASR model. To solve this issue, meta-learning for-
mulates ASR for each source language into many small ASR
tasks and meta-learns a model initialization on all tasks from
different source languages to access fast adaptation on unseen
target languages. However, for different source languages, the
quantity and difficulty vary greatly because of their different
data scales and diverse phonological systems, which leads to
task-quantity and task-difficulty imbalance issues and thus a
failure of multilingual meta-learning ASR (MML-ASR). In
this work, we solve this problem by developing a novel adver-
sarial meta sampling (AMS) approach to improve MML-ASR.
When sampling tasks in MML-ASR, AMS adaptively deter-
mines the task sampling probability for each source language.
Specifically, for each source language, if the query loss is
large, it means that its tasks are not well sampled to train ASR
model in terms of its quantity and difficulty and thus should be
sampled more frequently for extra learning. Inspired by this
fact, we feed the historical task query loss of all source lan-
guage domain into a network to learn a task sampling policy
for adversarially increasing the current query loss of MML-
ASR. Thus, the learnt task sampling policy can master the
learning situation of each language and thus predicts good
task sampling probability for each language for more effec-
tive learning. Finally, experiment results on two multilingual
datasets show significant performance improvement when ap-
plying our AMS on MML-ASR, and also demonstrate the
applicability of AMS to other low-resource speech tasks and
transfer learning ASR approaches. Our codes are available at:
https://github.com/iamxiaoyubei/AMS.

1 Introduction
Automatic Speech Recognition (ASR) has attracted a lot of at-
tention recently and achieved significant improvements (Chan
et al. 2016; Graves et al. 2006; Pratap et al. 2019) brought by
the success of deep neural networks. However, building an
end-to-end deep ASR model often requires huge transcribed
training data, which is impractical for the low-resource lan-
guages due to the scarcity of audio data and the huge labor
resources consumed in transcription.
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To solve this issue, many works are devoted to develop
low-resource ASR approaches. The representative methods in
this line are transfer learning ASR (TL-ASR) (Hu et al. 2019;
Kunze et al. 2017), multilingual transfer learning ASR (MTL-
ASR) (Adams et al. 2019; Cho et al. 2018; Tong, Garner, and
Bourlard 2017) and multilingual meta-learning ASR (MML-
ASR) (Hsu, Chen, and yi Lee 2020) that all aim to learn an
ASR model initialization from source languages such that the
initialization can quickly adapt to target language via fine-
tuning on a few data. Among them, TL-ASR considers one
source language and regards the pretrained ASR model on the
source data as a model initialization. But as shown in Fig. 1
(a), the learnt initialization by TL-ASR often overfits the
source language and cannot quickly adapt to a different target
language. To resolve this issue, MTL-ASR and MML-ASR
consider multiple source languages. Inspired by multi-task
learning, they both sample partial data from each language
domain to construct a small speech recognition task. Then for
each sampled task, MTL-ASR directly trains its model on this
task, while MML-ASR adapts its ASR model to the validation
data of the task via fine-tuning on a few training data of the
task and minimizes the validation loss. In this way, the learnt
initializations by MTL-ASR and MML-ASR can usually fast
adapt to the target low-resource language, as both MTL-ASR
and MML-ASR learn the common knowledge from all tasks
from different language domains which facilitates learning
target languages.

However, when sampling tasks from these language do-
mains, MTL-ASR and MML-ASR often ignore the underly-
ing task imbalance issues which could result in unsatisfactory
performance. First, different kinds of languages have dif-
ferent training data scales so the underlying task quantity
for each language domain varies greatly, which leads to the
task-quantity imbalance. Second, as different languages
have diverse phonological systems, the tasks drawn from
different language domains have various recognition diffi-
culties, causing the task-difficulty imbalance. In this way,
for MTL-ASR and MML-ASR, both uniform sampling that
uniformly samples tasks from each language domain and
more advanced task-quantity-balanced sampling whose
sampling rate for each domain positively relies on its task
quantity (data scale) cannot handle the task imbalance issue.
Uniform sampling neither considers the task-quantity imbal-
ance nor the task-difficulty imbalance, while task-quantity-
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Figure 1: Comparison of learnt initializations under task-quantity-balanced sampling. The dashed lines denote the adaptation paths
from initialization θ to target languages and the circular area of the language represents the training data scale of the language.
(a) Initialization learnt in TL-ASR overfits the only one source language. Initializations in MTL-ASR (b) and MML-ASR (c) are
close to the optimal model of the large-scaled language and departure from the small-scaled languages. (d) Initialization learnt
by our AMS has a more balanced distance to all languages because of our adaptive sampling to handle the task imbalance.

balanced sampling directly ignores task-difficulty imbalance.
So the learnt initializations by MTL-ASR and MML-ASR
are biased, and cannot fast adapt to the target language. For
instance, as shown in Fig. 1 (b) and (c), when using task-
quantity-balanced sampling in MTL-ASR and MML-ASR,
their learnt initializations are often close to the optimal model
of the large-scaled language and departure from those of the
small-scaled languages. So the learnt initializations are often
far from the optimal models of target languages which usu-
ally locates around all source languages, and cannot be fast
adapted to target languages via fine-tuning on low-resource
training data.

Contributions. To resolve the above task imbalance issue,
we develop a novel adversarial meta sampling (AMS) method
for multilingual low-resource speech recognition. This AMS
can effectively help both MML-ASR and MLT-ASR han-
dle task imbalance problem and boost their performance.
Considering the superior performance of MML-ASR over
MLT-ASR, in this work we spend more efforts to introduce
AMS on MML-ASR. Specifically, we observe that the query
losses of tasks from each language domain can well measure
both task-quantity imbalance and task-difficulty imbalance.
For each language domain, if its tasks are not well sampled in
terms of its task quantity and task difficulty, then its tasks will
have relatively large query losses. It means that the language
domain with large task query loss requires more training.
So we design a policy network to increase the query loss of
MML-ASR model through adversarial learning for sampling
from proper language domain. Our policy network incorpo-
rates LSTM (Hochreiter and Schmidhuber 1997) structure
and attention mechanism to adaptively predict the most be-
fitting task sampling probability for each language domain
by using the long-term information in LSTM and the current
query losses at each training iteration. Through such an online
and adversarial manner, the sampling policy is dynamically
changed along with the training state of the MML-ASR. In
this way, the language domain that are not well sampled in
terms of its task quantity and task difficulty will be sampled
more in the later training iterations, making the MML-ASR
model learn a more balanced initialization for better adapta-
tion to the target languages as shown in Fig. 1 (d).

Moreover, we validate our method on several datasets with
diverse languages selected from Mozilla Common Voice
Corpus (Mozilla.org 2019) and the public IARPA BABEL

dataset (Gales et al. 2014). The experimental results demon-
strate that our AMS significantly improves the performance
over the existing approaches on low-resource ASR, espe-
cially under the realistic task-imbalance scenarios. Further-
more, we conduct experiments on speech classification and
speech translation, which proves that our AMS can be easily
generalized to improve other low-resource speech tasks.

2 Related Work
Transfer learning ASR. To alleviate the need for la-
beled data, recent works utilize unsupervised pre-training
and semi-supervised methods to exploit unlabeled data,
e.g. wav2vec (Schneider et al. 2019), predictive cod-
ing (Chung and Glass 2020), self-training (Kahn, Lee, and
Hannun 2020) and weak distillation (Li et al. 2019). But
they still require substantial unlabeled data which is un-
available for some minority languages. To solve this is-
sue, transfer learning is explored via using other source
languages to improve the performance of low-resource lan-
guages (Kunze et al. 2017), which requires that the source
and target languages are similar and the source language has
sufficiently large data. Moreover, multilingual transfer learn-
ing ASR (Dalmia et al. 2018; Watanabe, Hori, and Hershey
2017; Toshniwal et al. 2018) is developed using different
languages to learn language-independent representations for
performance improvement under the low-resource setting.
Meta-learning ASR. Meta-learning approaches (Zhou et al.
2019, 2020) can meta-learn a model initialization from train-
ing tasks with fast adaptation ability to new tasks with only
a few data and thus is suitable to handle low-resource data
learning problems. Especially, Hsu et al.(Hsu et al. 2020) and
Winata et al. (Winata et al. 2020) adopted MAML (Finn et
al. 2017) for low-resource ASR and code-switched ASR and
both achieved promising results. But these method ignores
task imbalance in real-world scenarios and equally utilizes
the meta-knowledge across all the languages, which leads
to performance degradation. To alleviate quantity imbalance,
Wang et al. (Wang, Tsvetkov, and Neubig 2020) improves
differentiable data selection by optimizing a scorer with the
average loss from different languages to balance the usage
of data in multilingual model training. Besides the language
quantity, our AMS also considers the language difficulty and
learns the sampling policy in an adversarial manner.
Adversarial learning ASR. Inspired by domain adversarial



training (Ganin et al. 2016), recent works introduced adver-
sarial learning into ASR to learn robust features invariant
to noise conditions (Shinohara 2016) and accents (Sun et al.
2018b). Besides, some researchers use a domain-adversarial
classification objective over many languages on multilingual
ASR framework to force the shared layers to learn language-
independent representations (Yi et al. 2018). Differently, our
proposed method explores adversarial learning to solve the
task imbalance problem in multilingual meta-learning ASR
and can learn to adaptively sample the meta-training tasks
for effectively training low-resource ASR models.

3 Preliminaries
Here we briefly introduce the ASR model and its meta-
learning version which are used in our method.

Multilingual Speech Recognition
ASR model. We first introduce the joint CTC-attention based
end-to-end ASR architecture (Kim, Hori, and Watanabe 2017;
Hori et al. 2017) because of its effectiveness and efficiency.
It consists of a Seq2Seq network for frames alignment and
symbols recognition, and a connectionist temporal classifi-
cation (CTC) module (Graves et al. 2006) to encourage the
alignments to be monotonic. For the seq2seq model, it con-
tains an encoder, a decoder, and an attention unit. CTC is on
the top of the encoder and is jointly trained with the Seq2Seq
model. Then ASR network combines these two components
and minimizes L(θ) = λctcLctc + (1− λctc)Lseq2seq.
Multilingual ASR model. To overcome the challenges
brought by different sub-word units, lexicon and word in-
ventories between different languages, we take the union
over all the language-specific token sets and train a single
model on a mixture dataset which combines all the source
language data (Watanabe, Hori, and Hershey 2017; Tosh-
niwal et al. 2018). Given N languages with training sets
{Di}Ni=1 and token sets {Ci}Ni=1, the mixture training set is
Dmultilingual = ∪Ni=1Di and the token set for the mixture dataset
is Cmultilingual = ∪Ni=1Ci.

Multilingual Meta-learning ASR
We train a multilingual meta-learning ASR (MML-ASR)
model on all languages to pursue the few-shot learning abil-
ity to handle the low resource recognition problems. Spe-
cially, we use f(θ) to denote a multilingual ASR model
parameterized by θ and adopt Dsource = {Dk

source}Kk=1 to de-
note K kinds of source languages. To apply meta learning,
e.g. MAML (Finn, Abbeel, and Levine 2017) and Rep-
tile (Nichol, Achiam, and Schulman 2018), for the k-th kind
of language, we sample partial data Dk

task (a few sentences)
fromDk

source to construct a small recognition task T ik . Then we
split Dk

task into support data Dk
support and query data Dk

query.
Accordingly, for each language we can sample many tasks
denoted by Tk = {T ik }

nk
i=1, where nk is the task quantity

of the k-th kind of language. Let V be the total number of
examples in the k-th kind of language and w be the num-
ber of examples per task, then nk could be calculated by
combination number CwV . For brevity, let T be the all task

set T = {{T i1 }
n1
i=1, · · · , {T iK}

nK
i=1}. Now MML-ASR can be

formulated as:

minθ ETi∼T LDquery(θ − α∇θLDsupport(θ)), (1)

where Ti is sampled from T , Dsupport, and Dquery respectively
denote the support and query data in task Ti. This model can
be understood as that given a common model parameter θ
for all language (or tasks), for a sampled task Ti, we adapt
the parameter θ to this specific task via running one gradient
descent on its support data and obtain the task specific model
parameter θTi = θ − α∇θLDsupport(θ). Then we evaluate the
effectiveness of θTi on the query data Dquery of task Ti and
use this query loss, denoted as QTi = LDquery(θTi), to guide
the learning of the model parameter θ. This process actually
requires the learnt common model parameter θ to be close
to the optimal model of all tasks Ti in task set T such that
taking only one gradient step on a small-sized dataset Dsupport

can achieve satisfactory performance on the query data Dquery.
This mechanism gives the few shot learning ability of model
parameter θ.

After training, given a new speech recognition task with
a few training data, we adapt the model parameter θ to this
task by a few gradient descent steps and obtain a task specific
model for test. So this MML-ASR model can well handle the
low resource speech recognition problem.

This MML-ASR is inspired by the prior meta-learning
ASR framework (Hsu, Chen, and yi Lee 2020). Hsu et
al. (Hsu, Chen, and yi Lee 2020) first used a shared back-
bone to extract common features for all languages and then
adopted different network branches to learn language-specific
features, while MML-ASR here uses an entire shared model
for all languages to simplify operations and make full use of
information from different languages.

4 Adversarial Meta Sampling
Motivation
As introduced in Sec. 3, for each meta-training iteration,
we need to sample a task Ti from the task set T =
{{T i1 }

n1
i=1, · · · , {T iK}

nK
i=1} where Tk = {T ik }

nk
i=1 denotes

the tasks in the k-th language domain. In real-world sce-
narios, different languages have a diverse geographic loca-
tion, phonology, phonetic inventory, language family, and
orthography, and their datasets vary greatly in size. So when
sampling task Ti from all languages task set T to train our
MML-ASR model, there are two severe issues. The first one
is that the underlying task quantity (n1, · · · , nK) of each
language fluctuates over a wide range, which means that
the task sets Tk (k = 1, · · · ,K) are imbalanced in terms
of their task quantity (task-quantity imbalance). The sec-
ond issue is that the tasks sampled from different language
task sets Tk (k = 1, · · · ,K) actually have very different
recognition difficulty due to the aforementioned language
specificities (Waibel et al. 2000), leading to an imbalance
in terms of task difficulty (task-difficulty imbalance). So
sampling approaches become especially important in ASR.
Note, uniform sampling or task-quantity-balanced sampling,
namely sampling rate for each language positively relying
on its task quantity in Tk, usually ignore the task-difficulty
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Figure 2: (a) The illustration of our AMS framework. (b) The architecture of the policy network.

imbalance, and cannot achieve satisfactory performance as
shown in our experiments.

To resolve above two imbalance issues, we propose a novel
and effective adversarial meta sampling approach that adap-
tively determines the sampling probability for each language
task set Tk in the meta-training process to balance both task
quantity and difficulty in different language domains. Specif-
ically, we observe that the query losses of tasks can well
measure both imbalances because that if one language task
set Tk are not well sampled in terms of its task quantity
and task difficulty, then its tasks have relatively large query
loss. Intuitively, at each iteration, one can sample several
tasks from each language tasks Tk and compute the aver-
age query loss QTk for each Tk. Then a simple way is to
use QTk/

∑K
i=1QTk as the sampling probability for each

Tk. However, this method ignores the long-term query loss
information and only greedily assigns a large probability to
some language tasks Tk according to the current query loss,
which could be too locally greedy and leads to performance
degradation. Maintaining a query loss buffer which linearly
or exponentially averages the historical query losses still can-
not achieve satisfactory performance, since the importance
of current query loss and historical query losses is not neces-
sarily a simple (exponential) average relation. Moreover, it
requires to tune several manual hyper-parameters (e.g., win-
dow size) for computing average query losses. All sampling
methods mentioned above have been evaluated in Table 4.

Our Sampling Approach
To solve the above issues, we propose adversarial meta sam-
pling method by designing a policy network which injects
attention mechanism into LSTM (Hochreiter and Schmidhu-
ber 1997). At each training iteration, it can adaptively predict
the most befitting probability to sample from each language
tasks Tk by using the long-term information in LSTM and
the current query losses. Moreover, the policy network can
be jointly trained with MML-ASR model in an end-to-end
way without manual tuning extra hyper-parameters.

Specifically, as shown in Fig. 2 (a), at each meta-training
iteration, the policy network samples M kinds of language
task set denoted by {Ttj}Mj=1, tj ∈ {1, · · · ,K} from the K
kinds of language task T and then samples one task T itj from

each Ttj to form training task set {T itj}
M
j=1 for meta-training

of MML-ASR model. So the meta-objective of MML-ASR
model in Eqn. (1) can be reformulated as

minθ Eπ∼fφETi∼π(T )LDquery(θ − α∇θLDsupport(θ)), (2)

where π denotes the task sampling policy learnt by the policy
network fφ parameterized by φ.

After meta-training of MML-ASR model, we can obtain
the query losses {QT itj

}Mj=1 of each training task {T itj}
M
j=1.

As mentioned in Sec. 4, the query losses of tasks drawn
from each language task set Tk can well measure the task
imbalances in terms of both task quantity and task difficulty.
This is because if one language task set Tk are not well sam-
pled in terms of its task quantity and task difficulty, then its
tasks have relatively large query loss. This actually means
that the language task set Tk with large query loss QTk re-
quires more extra training. So at each iteration, our policy
network attempts to increase the query loss of MML-ASR
model through adversarial learning for sampling the proper
language task set for training. Formally, the objective loss of
our policy network is defined as:

φ∗ = argmaxφ J (φ),whereJ (φ) =
Eπ ∼ fφETi∼π(T )LDquery(θ − α∇θLDsupport(θ)).

(3)

Then we focus on introducing the policy network fφ,
which shown in Fig. 2 (b). First, we use K-dim vector
Qs−1T = (Qs−1T1 , Qs−1T2 , ..., Qs−1TK ) to denote the query loss
for each language task set Tk at the (s− 1)-th meta-training
iteration. Second, at the s-th iteration, the policy network
will output a K-dim PsT = (PsT1 ,P

s
T2 , ...,P

s
TK ) in which

PsTk denotes the sampling probability for the k-th language
task set Tk. Third, as aforementioned, we select the top-M
sampling probabilities and respectively sample one task from
their corresponding language task set Tk for meta-training.
Then we use the M new query loss {QsT itj

}Mj=1 to update the

corresponding query loss in Qs−1T for obtaining QsT .
Next, at the (s+ 1)-th iteration, we feed QsT and PsT into

the policy network and combine these two inputs (QsT ,PsT ) to
calculate the feed forward attention, and then get the attention
output cs+1 through a fully-connected layer. Then, a LSTM
layer takes the hidden state of previous LSTM cell hs as well



Algorithm 1 Adversarial Meta Sampling
Require: α, β, γ: step size hyperparameters
1: Initialize θ, φ
2: Initialize QTk = 0,∀k ∈ {1, 2, ...,K}
3: while not done do
4: Generate K-dim vector of sampling probabilities PT = (PT1 ,PT2 , ...,PTK ) using fφ
5: Sample M language task set {Ttj}Mj=1, tj ∈{1, · · ·,K} with top-M largest sampling probabilities
6: Sample one task T itj from each Ttj to form {T itj}

M
j=1, tj ∈ {1, · · · ,K} for meta-training

7: for all T itj do
8: Generate support set Dtj

support and query set Dtj
query from T itj

9: Compute adapted parameters with respect to Dtj
support using θT itj

= θ − α∇θL
D
tj
support

(θ)

10: end for
11: Update θ ← θ − β∇θ

∑M
j=1QT itj

, where QT itj
= L

D
tj
query

(θT itj
) using each Dtj

query

12: Update query loss QT =(QT1 , ..., QTK ), where QTk=QT itj |tj=k
if Tk is sampled else QTk=Q

s−1
Tk

13: Update φ← φ+ γ∇φ∑M
j=1
PTtjLDtjquery

(θ − α∇θL
D
tj
support

(θ))

14: end while

as attention output cs+1 as input, and generates the LSTM
output ys+1 and current hidden state hs+1. Finally, based on
ys+1, we use fully-connected layer with Softmax function to
predict a probability vectorPs+1

T = (Ps+1
T1 ,Ps+1

T2 , ...,Ps+1
TK ).

In this way, same as the s-th iteration, we can select the top-
M largest probabilities and sample tasks from their corre-
sponding task sets for meta-training.

As the discrete sampling operations for obtaining M
tasks is not differentiable, we apply REINFORCE algo-
rithm (Williams 1992) to solve this issue and optimize the
policy network via the following gradient,

∇φJ (φ)=∇φEπ∼fφETi∼π(T )LDquery(θ − α∇θLDsupport(θ))

≈∇φ
∑M
i=1PTiLDquery(θ − α∇θLDsupport(θ)).

Through such an online and adversarial manner, the sampling
policy is dynamically changed along with the training state
of the MML-ASR. In this way, the language task set Tk that
is not well sampled in terms of its task quantity and task
difficulty will be sampled more for more effective learning.

Moreover, our sampling method can be applied to not only
MML-ASR methods but also multilingual transfer learning
ASR (MTL-ASR) without any architecture modification. For
MTL-ASR, we directly use the training loss LTk of a task
sampled from each source language domain to construct the
loss vector (LT1 ,LT2 , ...,LTK ) and feed it into our policy
network. Similarly, the policy network outputs the sampling
probability for each language domain. Experimental results
in Sec. 5 also verify the superiority of our policy network and
show significant improvement when applying our sampling
method into MTL-ASR.

Finally, our Adversarial Meta Sampling framework is sum-
marised in Algorithm 1.

5 Experiments
Datasets. Common Voice (Mozilla.org 2019) is an open-
source multilingual voice dataset and contains about 40 kinds
of languages. For low-resource evaluation, we construct three
different datasets: Diversity11, Indo12, and Indo9 which are
described in Table 1. To construct the Diversity11 dataset,

Table 1: Multilingual dataset statistics in terms of hours (h).

Diversity11
Source

Turkish 13 Tatar 25 Tamil 3
Swedish 5 Mongolian 9 Latvian 4
Dhivehi 6 Breton 5 Arabic 7

Target
Kyrgyz-train 10 Kyrgyz-test 1

Estonian-train 9 Estonian-test 1

Indo12

Source
English 10 Portuges 10 Russian 10
French 10 German 10 Welsh 10
Italian 10 Catalan 10 Swedish 5

Target
Spanish-train 10 Spanish-test 1.5
Dutch-train 10 Dutch-test 1.5
Kabyle-train 10 Kabyle-test 1.5

we randomly select 11 kinds of languages from different
districts with varying diversities and quantities, and divide
them into 9 source languages and 2 target languages. For
Indo12, we randomly select 11 kinds of languages with little
difference from the same Indo-European language family and
1 Afro-Asiatic language. To test our method on fewer source
languages, we remove 3 languages (Russian, Swedish, and
Welsh) from Indo12 to obtain Indo9.

In addition, we also conducted experiments on the IARPA
BABEL dataset (Gales et al. 2014) with 6 source languages
(Bengali, Tagalog, Zulu, Turkish, Lithuanian, Guarani) and 3
target languages (Vietnamese, Swahili, Tamil).
Implementation Details. We use the joint attention-CTC
ASR model (Kim, Hori, and Watanabe 2017; Hori et al.
2017) as our ASR model. The encoder contains a 6-layered
VGG (Simonyan and Zisserman 2015) extractor and 5
BLSTM (Graves, Jaitly, and rahman Mohamed 2013; Graves
and Jaitly 2014) layers, each with 320-dimensional units per
direction. Location-aware attention (Chorowski et al. 2015)
with 300 dimensions is used in our attention layer and the de-
coder is a single LSTM (Hochreiter and Schmidhuber 1997)
layer with 320 dimensions. We set λctc to 0.5. During infer-
ence, the greedy-search decoding is used to get the best hy-
pothesis. Following (Hori et al. 2017), we use 80-dimensional
log Mel-scale filterbank coefficients with pitch features as the
input features. Google’s SentencePiece toolkit (Google. 2019)



Table 2: Results of low resource ASR on Diversity11, Indo12 and Indo9 in terms of WER (%).

Target Kyrgyz Estonian Spanish Dutch Kabyle
Source Diversity11 Indo9 Indo12 Indo9 Indo12 Indo9 Indo12

Monolingual training (Hori et al. 2017) 76.25 86.04 80.30 68.71 85.41
TL-ASR (Kunze et al. 2017) 68.28 82.04 79.39 56.58 89.12

MTL-ASR (multi-head) (Dalmia et al. 2018) 67.56 81.50 75.82 73.00 57.80 56.41 82.10 81.23
MTL-ASR (Watanabe, Hori, and Hershey 2017) 64.90 83.70 73.85 71.40 62.55 58.46 84.25 81.88

our AMS (MTL-ASR) 59.55 79.33 71.02 68.97 58.22 54.96 83.90 79.26
MML-ASR (Hsu, Chen, and yi Lee 2020) 58.29 79.66 66.75 65.24 53.33 52.56 79.45 75.96

our AMS (MML-ASR) 50.72 72.26 65.21 64.40 51.18 49.13 78.21 73.69

is employed to process audio transcripts. All transcripts in
the different multilingual datasets are used to train sub-word
models separately based on the byte pair encoding (BPE)
compression algorithm (Sennrich, Haddow, and Birch 2016;
Kudo 2018). The transcripts are pre-tokenized to sequences
of sub-word units (tokens) one-hot vectors using the sub-
word models. The policy network contains a feed forward
attention and a one-layer LSTM with the hidden size 100
and the input size 32. We use Adam with an initial learning
rate γ = 0.035 and an entropy penalty weight 10−5 to train
the policy network. We set M as 3 after searching the range
M ∈ {2, 3, 4, 5, 7, 9} and set w as 48, of which 24 examples
are divided into support set and 24 examples into query set.

Results on Low-resource ASR
Results on Diversity11. Table 2 reports the results on Di-
versity11 in terms of word error rate (WER). For all target
languages, our AMS significantly outperforms all previous
methods. First, the performance of monolingual is poor with-
out the help of source languages. Second, meta-learning de-
crease WER over 6% thanks to its few-shot learning ability
by learning better initialization parameters that enjoy fast
adaptation ability. Moreover, by learning to sampling tasks
for meta-learning, our AMS further improves the results over
7% on this dataset which has large task imbalance.
Results on Indo12 and Indo9. As shown in Table 2, our
method consistently achieves the state-of-the-art performance
on Indo12 which eliminates task-quantity imbalance and
Indo9 which has much fewer source languages for training.
This is because our AMS uses adversarial sampling to select
better tasks for effective learning and well overcomes the
task-difficulty imbalance issue. The results of Kabyle are
much worse than that of Spanish and Dutch because Kabyle
is an Afro-Asiatic language and all source languages are Indo-
European language, which indicates that source languages
from the same language family are more helpful for target
languages.
Results on IARPA BABEL. In order to further verify the
effectiveness of our AMS, we also conducted experiments to
compare with previous works on the IARPA BABEL, which
is another public multilingual dataset. Table 3 reports the
results on BABEL. In addition to comparing with the base-
lines above, we also selected the results of recent papers for
comparison. As can be observed, our AMS achieves the best
results for all target languages, which can improve the perfor-
mance of both MML-ASR and MTL-ASR with the proposed
adversarial meta sampling method. It further demonstrates

Table 3: Results of low resource ASR on IARPA BABEL in
terms of Character Error Rate (CER%).

Method Vietnamese Swahili Tamil
Monolingual (Multi-CTC)(Hsu et al. 2020) 71.80 47.50 69.90
Monolingual (BLSTMP) (Cho et al. 2018) 54.30 33.10 55.30
Monolingual (VGG-Small) (Chen et al. 2020) 46.00 39.60 57.90
Monolingual (VGG-Large) (Chen et al. 2020) 48.30 38.30 60.10
Monolingual (Joint attention-CTC) (Hori et al. 2017) 48.68 38.62 54.45
MTL-ASR (Multi-CTC)(Hsu el al. 2020) 59.70 48.80 65.60
MTL-ASR (Joint attention-CTC)(Watanabe et al. 2017) 47.17 34.10 51.17
our AMS (MTL-ASR) 45.51 33.15 49.57
MML-ASR (Multi-CTC)(Hsu et al. 2020) 50.10 42.90 58.90
MML-ASR (Joint attention-CTC)(Hsu et al. 2020) 45.10 36.14 50.61
our AMS (MML-ASR) 43.35 32.19 48.56

Table 4: Ablation study results on Diversity11 in terms of
WER (%).

Method Kyrgyz Estonian
MML-ASR (Reptile) (Nichol, Achiam, and Schulman 2018) 66.51 83.17
MML-ASR (FOMAML) (Hsu, Chen, and yi Lee 2020) 59.23 78.64
MML-ASR (MAML) (Uniform) (Hsu, Chen, and yi Lee 2020) 58.29 79.66
PPQ-MAML (Dou, Yu, and Anastasopoulos 2019) 58.95 77.26
PPQL-MAML (Sun et al. 2018a) 54.87 74.97
PPEAQL-MAML 55.14 75.41
PPAQL-MAML 53.15 73.33
our AMS-MAML w/o attention 54.16 74.29
our AMS-Reptile 59.30 78.49
our AMS-FOMAML 53.04 74.77
our AMS-MAML 50.72 72.26
our AMS-MAML (80% target) 59.02 75.87
our AMS-MAML (50% target) 70.27 81.97
our AMS-MAML (20% target) 87.11 91.72

that the improvement of our AMS can be easily reproduced
on different multilingual low-resource ASR datasets.

Ablation Studies
Considering the superior performance of MML-ASR over
MTL-ASR, all the following ablation experiments focus on
AMS based on MML-ASR.
Different meta-learning methods. Table 4 shows that our
AMS can improve all meta-learning methods, including
MAML (Hsu et al. 2020; Finn et al. 2017), FOMAML (Hsu
et al. 2020; Finn et al. 2017), Reptile (Nichol et al. 2018).
Among them, AMS-FOMAML achieves similar performance
as AMS-MAML but has higher training efficiency. So in the
other speech tasks, we focus on AMS- FOMAML.
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Figure 3: Imbalance analysis of task difficulty in our speech
translation experiments. The distance from the dotted circle
where the language is located to the black point represents the
distance from the language to English and the circular area
of the language represents the sample times of this language.

Different scale of training data. To test our method when
data are only a few, we reduce the training data of target
languages to 80%, 50% and 20%. From Table 4 and 2, one
can observe that with 80% training data, our method still
works better than most baselines with 100% training data,
which testifies our method can effectively alleviate the need
of heavy annotated training data.
Comparison among different sampling methods. We fur-
ther compare the performances of different sampling meth-
ods. 1) Sampling tasks uniformly (Uniform). 2) Sampling
tasks with the probability proportional to the task quantity of
each language task set (PPQ) (Dou, Yu, and Anastasopoulos
2019). 3) Sampling tasks with the probability proportional to
the query loss of each language task set (PPQL) (Sun et al.
2018a). 4) Sampling tasks with the probability proportional
to the average query loss of each language task set with a
window (PPAQL). 5) Sampling tasks with the probability
proportional to the exponential average query loss of each
language task set (PPEAQL). 6) Our AMS without attention
layer (AMS w/o attention). From Table 4, one can find that
(1) PPQ is slightly better than Uniform by considering the
task-quantity imbalance; (2) the methods that use query loss
to sample tasks have greatly improved the performance and
PPAQL is the best; (3) our AMS significantly surpasses other
methods, which indicates that our policy network can effec-
tively exploit the long-term and instant information to sample
the most benefiting tasks in the training process.

Generalization analyses
AMS on multilingual transfer learning. Our sampling
method can be generalized to MTL-ASR as mentioned in
Sec. 4. As shown in Table 2, our AMS (MTL-ASR) outper-
forms MTL-ASR on all datasets. It shows that our AMS can
effectively improve both meta-learning methods and multi-
lingual transfer learning methods by simply incorporating a
policy network for adversarial sampling.
AMS on speech classification. Our speech classification
datasets contain 5 source datasets and 5 target datasets pro-
vided by the AutoSpeech 2020 competition (InterSpeech
2020). Different datasets come from different speech clas-
sification domains with varying examples, classes and the
quantity of examples, including speaker identification, emo-
tion classification, etc. We evaluate our AMS with Mo-
bileNetV2 (Sandler et al. 2018) as the feature extractor and

Table 5: Results of speech classification in terms of accu-
racy(%).

Method D1 D2 D3 D4 D5 Avg acc
Train from scratch 3.53 81.32 36.08 47.0 3.35 34.26
Pretraining 4.77 78.0 41.09 48.45 3.93 35.25
FOMAML (Finn, Abbeel, and Levine 2017) 9.8 77.8 42.27 49.76 6.39 37.20
AMS-FOMAML 10.8 82.36 45.70 49.09 10.21 39.63

Table 6: Results of speech translation in terms of BLEU.

Method Mongolian Swedish Turkish
CoVoST scratch (Wang et al. 2020) 0.20 0.30 0.80
Train from scratch 0.27 0.22 0.85
Pretraining 0.30 0.57 1.26
FOMAML (Finn, Abbeel, and Levine 2017) 0.35 0.67 1.26
AMS-FOMAML 0.36 0.70 1.45

NetVLAD (Arandjelović et al. 2016) as the aggregation net-
work. As shown in Table 5, our AMS outperforms most of
the baselines with large improvement.
AMS on speech translation. Here we consider translating
other languages speech to English. We select 8 source lan-
guages of 10 hours and 3 target languages less than 10 hours
from CoVoST (Wang et al. 2020), a multilingual speech trans-
lation (ST) corpus. For simplicity, we use the same model ar-
chitecture and data preprocessing procedure as ASR in Sec. 5,
which can achieve the same performance as the model used
in CoVoST. Table 6 shows the result of case-insensitive tok-
enized BLEU (Papineni et al. 2002) using sacreBLEU (Post
2018). By comparison, our method outperforms all baselines,
including CoVoST, and achieves state-of-the-art performance
in all the three target languages.
Analysis of difficulty imbalance. We limit the quantity of
each source language to 10 hours to analyze the task difficulty
in our ST experiments. In Figure 3, we use the semantic
similarity between English and other source languages (Senel
et al. 2018) as well as the language learning difficulty for
English speakers (FSI. 2007) as references to measure the
distances, where the farther the language is, the more difficult
is to translate it into English. It can be observed a trend that
the sample times increase with the distances. For example,
Chinese and Dutch are the farthest language with the highest
sampling times and the closest language with the fewest
sample times, respectively. This indicates that our method
can automatically sample tasks according to the task difficulty
to alleviate the imbalance from different language difficulties.

6 Conclusion
In this work, to tackle the task-imbalance problem caused by
language tasks difficulties and quantities, we develop a novel
Adversarial Meta Sampling framework to adaptively sample
language tasks for learning a better model initialization for
target low-resource languages. It can well handle the chal-
lenging multilingual low-resource ASR in real world. Exten-
sive experimental results validate that our method effectively
improves the few-shot learning ability of both meta-learning
and transfer learning and also shows its great generalization
capacity in other low-resource speech tasks.
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