
Linguistically Routing Capsule Network for
Out-of-distribution Visual Question Answering

Qingxing Cao1, Wentao Wan2, Keze Wang2, Xiaodan Liang1, Liang Lin2*

1Shenzhen Campus of Sun Yat-sen University, 2Sun Yat-Sen University
caoqx8@mail.sysu.edu.cn, wentao.wan@qq.com,

kezewang@gmail.com, xdliang328@gmail.com, linliang@ieee.org

Abstract

Generalization on out-of-distribution (OOD) test data is
an essential but underexplored topic in visual question an-
swering. Current state-of-the-art VQA models often exploit
the biased correlation between data and labels, which re-
sults in a large performance drop when the test and train-
ing data have different distributions. Inspired by the fact
that humans can recognize novel concepts by composing ex-
isted concepts and capsule network’s ability of representing
part-whole hierarchies, we propose to use capsules to repre-
sent parts and introduce “Linguistically Routing” to merge
parts with human-prior hierarchies. Specifically, we first
fuse visual features with a single question word as atomic
parts. Then we introduce the “Linguistically Routing” to
reweight the capsule connections between two layers such
that: 1) the lower layer capsules can transfer their out-
puts to the most compatible higher capsules, and 2) two
capsules can be merged if their corresponding words are
merged in the question parse tree. The routing process max-
imizes the above unary and binary potentials across multi-
ple layers and finally carves a tree structure inside the cap-
sule network. We evaluate our proposed routing method on
the CLEVR compositional generation test, the VQA-CP2
dataset and the VQAv2 dataset. The experimental results
show that our proposed method can improve current VQA
models on OOD split without losing performance on the in-
domain test data.

1. Introduction
The task of visual question answering (VQA) is to cor-

rectly answer a question about an image. It is regarded as
a core task towards the complete AI [5] as it requires a vast
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range of knowledge across multiple domains. However, the
complexity of this task also makes it impossible to annotate
enough training data that can cover all background knowl-
edge and reasoning routes. Thus, a VQA model must capa-
ble of generalizing on out-of-distribution (OOD) test data
to handle the unconstrained VQA tasks for practical appli-
cation.

Current state-of-the-art VQA models [47, 40, 41] focus
on increasing models’ capacity, but tend to catch the super-
ficial correlation between questions and answers [17, 24].
As such correlation only holds on training distribution, their
performance drops on test data that have a different distribu-
tion. Other works [42, 49, 21, 26, 23] have explored struc-
tured models to represent atomic elements(e.g. object size,
color, or relationships) and then integrate elements to infer
the final results. These methods have better interpretabil-
ity and generalization ability but perform worse than state-
of-the-art neural networks on general and unconstrained in-
domain test data.

Humans can recognize novel concepts by incorporating
learned concepts [30]. This compositional generalization
ability allows people to solve a plethora of problems using
a limited set of basic skills and is one of the major differ-
ences between human intelligence and the current deep neu-
ral networks. Meanwhile, the capsule network [38, 20, 19]
has the potential to connect the end-to-end neural network
with part-based models [14] that represent a sample with
part-whole hierarchies. Each capsule can be used to repre-
sent a certain part and the routing process can be used to
model the hierarchical structure. Although the capsule net-
work demonstrates interesting grouping properties in some
toy experiments, it still shows unsatisfactory results on the
large-scale image datasets since the diverse visual compo-
sitions cannot be captured by learning grouping weights in
a black-box manner without proper guidance.

Thus, we propose to inject the human-developed struc-
ture into the capsule network to improve neural networks’
compositional generalization ability while maintaining their
performance on in-domain settings, as shown in Figure 1.



Figure 1: Our proposed Linguistically Routing aims to merge capsules from bottom to top following the linguistic parse tree
guidance. Each row or circle represents a capsule and each color represents an encoded word. This compositional process is
performed across multiple layers and results in the tree structure inside the capsule network.

Specifically, we propose the “Linguistically Routing” to
generate the adaptive reasoning routines inside the capsule
network with the guidance of the question parse tree. We
first fuse each visual capsule with a single question word
to obtain the multimodal representation of the image and
question fragment. At each layer, the linguistically rout-
ing generates the reweighting vector between [0, 1] for each
capsule, such that: 1) only the most compatible higher cap-
sules are activated and receive the outputs from each lower
capsule, and 2) two capsules should be merged if their cor-
responding question fragments are merged in the parse tree.
To meet the above two requirements, the proposed linguisti-
cally routing learns to predict the unary potentials that select
the most representative capsules for each specific sample;
and generates the binary potentials that indicate whether
two capsules should be merged or not. The linguistically
routing maximizes the unary and binary potential with a
conditional random field (CRF). After forwarding all lay-
ers, a composing structure isomorphic to the parse tree is
carved inside the networks, and the capsules from the bot-
tom to the top layer can encode the question words, phrases,
clauses, and finally a sentence.

Our contribution can be summarized as follows. 1) We
propose an end-to-end trainable routing method that can
incorporate external structure information into the capsule
network. 2) We propose to utilize the linguistic parse tree to
guide the routing and tailor it to the visual question answer-
ing task. 3) We perform extensive experiments and show
the proposed linguistically routing capsule network can ob-
tain good generalization capability while maintaining per-
formance on in-domain test data.

2. Related Works

Visual question answering. The VQA task requires co-
reasoning over both images and text to infer the correct an-
swer. Earlier works used the CNN-LSTM-based architec-
ture and attention mechanism to train the neural networks
in an end-to-end manner [44, 39, 50, 45, 32]. Later, lots
of works [15, 28, 48, 6] focused on the joint embedding of
image and question. Most recently, state-of-the-art meth-
ods [47, 40, 41] exploited transformer-based architecture to
embed questions and image regions simultaneously. How-
ever, it has been argued that these black-box models might
exploit the dataset bias instead of understanding the ques-
tions and images [17, 24]. This argument has led to the
proposal of unbiased datasets [17, 25, 16, 27] and OOD
dataset [1]. Recent OOD VQA methods [37, 8, 13] trained
a question-only model to predict the answer and used the
trained model as a regularizer to reduce the dataset biases
and improve the performance on OOD test data.

Structured and interpretable model. Besides the end-
to-end neural networks, other methods tried to incorporate
additional structured information to improve the composi-
tional reasoning and generalization ability. The neural mod-
ular networks [4, 3, 21] use neural modules to solve a par-
ticular subtask and assemble them following a structured
layout to predict the final answer. [42, 35] used scene graph
as an additional signal then applied a GRU or graph con-
volution network to obtain the question-specific graph rep-
resentation. [34] also utilized a graph convolution network
but embedded the extra retrieved knowledge. PTGRN [9]
performed the interpretable reasoning process guided by
the dependency parse tree. [46, 23] transformed images



Figure 2: Overview of our linguistically routing within the capsule network. We first generate the linguistic layout and fuse
the extracted image feature with individual words as the network inputs. In each layer, the capsules are forwarded to the
next layer following the linguistic layout guidance. We use different colors to indicate different encoded words. Finally, the
routing process carves the parse tree-like structure, which is represented by the colored circles.

to scene graphs and performed symbolic inference on the
graph.

Capsule network. Sabour and Hinton et al. [38, 20]
proposed to divide each layer in a neural network into
many small groups of neurons called “capsules”. The cap-
sules can represent various properties of an object, and
the capsule routing can activate certain higher-level cap-
sules if their represented property appears in a certain sam-
ple. However, the existing capsule network studies learn
the grouping weights based on the discriminating loss only.
They do not incorporate human priors and have not been
evaluated on large-scale datasets.

Compared with the above methods, our proposed lin-
guistically routing aims at incorporating the humor-prior
structure inside the network without hard restrictions on the
information flow. Further, since the linguistic structure is
applied on the visual feature level, our method can com-
bine with other state-of-the-art to improve their generaliza-
tion ability while maintaining their expressive power on in-
domain data.

3. Linguistically Routing Capsule Network
Given the questions Q, images I , our proposed Linguis-

tically Routing is to align the capsule network’s routing
weights R with the question parse tree for predicting the
answer y. As shown in Figure 2, we first parse a question

and transform it into a linguistic layout G. Then, we fuse
the image feature and each word in the questions. We de-
note each resulting feature capsule as x0

i , and use a vector
c0i ∈ Rnq to represent which word is encoded by the i-th
capsule, where nq is the maximum length of the questions.
All capsules are concatenated as the network’s input X0.

In each layer l, we have nc capsules Xl = {xl
i}i=1:nc ,

their encoded words Cl = {cli}i=1:nc
, and the linguistic

layout gl+1. The linguistically routing process aims at gen-
erating the reweighting vector Rl = {rlij}i,j=1:nc

for each
pair of capsule xl

i and xl+1
j , such that each lower-level cap-

sule xl
i can activate a proper high-level capsule xl+1

j , while
two lower-level capsule xl

i and xl
i′ will be merged if their

encoded words cli and cli′ are merged in the layout gl+1.
After forwarding all layers, a tree-structured routing path

is generated inside the capsule network and the last layer
encodes the entire question-image embedding. We perform
global average pooling and linear transformation on the last
layer to predict the final answer.

3.1. Linguistic layout generation

We first generate the linguistic layout given the input
question Q. We obtain the dependency parse tree by pars-
ing the question with the off-the-shelf universal Stanford
Parser [10]. Then, we group the words according to whether
they are merged in the parse tree.



Figure 3: Routing process inside the capsule layer. We first generate the unary potential for each capsule and assign the
binary potential for each pair of capsules based on the linguistic layout. Then, we build a fully connected graph and perform
the CRF inference to maximize these two potentials across all capsules. The inference results are the routing weights of this
layer. As illustrated, the words “tiny” and “cylinders” should be merged together; thus, the binary potential of their edge is 1
if they select the same high-level capsule. The edges that do not connect to “cylinders” are omitted for clarity.

Specifically, we denote a node’s level l as the dis-
tance between that node and the furthest leaf node.
Consider a subtree rooted at node i with level l, we
group the words in this subtree into a set and denote it
by gli. All groups that are at the same level form a list
gl. For example, the groups at levels 0 and 1 are g0 =
{{are}, {there}, {more}, ..., {tiny}, {cylinders}} and
g1 = {{are}, {there}, {more}, ..., {than, tiny, cylinders}},
as shown in Figure 2. The generated layout
G = {g0, g1, ..., gH} is used to guide the routing process at
different levels of layers, where H is the maximum height
of the parse tree.

3.2. Word-level multimodal embedding

We fuse the extracted image feature v and encoded words
{wi}i=1:nq

with low-rank bilinear pooling [28] to obtain the
multimodal representations {x0

i }i=1:nq at layer 0. Specif-
ically, we project the words and the image feature to d-
dimensional space, then perform element-wise multiplica-
tion to obtain the x0

i :

x0
i = ReLU(FC(wi) ◦ FC(v)). (1)

Each multimodal representation contains the information of
the image and a single word wi, thus the c0i is a one-hot
vector where c0i [i] = 1. The concatenated representation
X0 is the input of the network.

3.3. Linguistically Routing

Given the capsules Xl, their encoded words Cl and the
guided layout gl+1, the routing process generates the rout-
ing weights {rlij}i,j=1:nc

in order to activate several higher-
level capsules and compose lower-level capsules with the
linguistic guidance. We use the unary potential ψi to indi-
cate the probability of activating each higher-level capsule
and use the binary potential ϕi,i′ that encourage capsule i
and capsule i′ to select the same capsule if they are merged

in the parsed tree. We maximize both potentials with a fully
connected CRF. The inference result of the CRF is the rout-
ing weights Rl, as shown in Figure 3.

Unary potential The unary potential ψi indicates
which higher-level capsule should be activated to represent
the capsule i. We project the xl

i or its global max pool-
ing onto an nc-dimensional vector with two fully connected
layers, where nc is the number of capsules. We apply soft-
max to normalize the resulting vector such that each ele-
ment is between [0, 1].

Binary potential The binary potential ϕi,i′(j, j) is
used to encourage capsule i and i′ to select the same high-
level capsule j if their corresponding words cli and cli′ are
merged in the linguistic layout g(l+1). Suppose cli is a set of
words merged at capsule i, we consider they are merged if
∃k, such that cli ∪ cli′ ⊇ gl+1

k .
However, the set operation is not differentiable and thus

prevents the entire model from end-to-end training. We
hence make cli a nq-dimensional vector whose entries repre-
sent how much the i-th capsule encodes each question word.
For example, at the input layer 0, the capsule i is the fusion
between the image and i-th word in the question, and c0i is
a one-hot vector where c0i [i] = 1. Then, if the softmax-
normalized routing weights have r0ij = 0.9 and r0ik = 0.05,
the encoded degree of the i-th word for capsules j and k are
c1j [i] = 0.9 and c1k[i] = 0.05 respectively. Given the rout-
ing weight Rl, we can update the cli described above and
have:

Cl+1 = Rl⊤Cl. (2)

To obtain the binary potential, we firstly transform the
guided layout g to an nq ∗nq correlation matrix g′ to repre-
sent whether two words i and i′ are merged:

g′l(i, i′) =

{
1 ∃a i, i′ ∈ gla
−1 otherwise,

(3)

where g is the linguistic layout described in Section 3.1.



g′l(i, i′) = 1 indicates that words i and i′ are in the same
group, e.g., {than, tiny, cylinders}. Otherwise We set
g′l(i, j) = −1 to prevent two words from early merging.
Then, We obtain the binary potential ϕi,i′ given the words
compatibility matrix g′. Intuitively, the binary potential
ϕi,i′ should be higher if capsule i and i′ contain more com-
patible words. Thus we have: ϕi,i′ = cli′

⊤
g′l+1

cli. For all
capsule pairs at layer l, we re-write the above equation in
matrix form, and have:

ϕ = Cl⊤g′l+1
Cl. (4)

Then, we expand each binary potential ϕi,i′ into a diagonal
nc ∗ nc matrix to set the potential as 0 when they select
different high-level capsules. Lastly, we construct the CRF
with this binary potential and the unary potential to build
the CRF, and obtain the routing weights Rl for all capsules
in layer l.

CRF inference The routing weights Rl should maxi-
mize both the unary and binary potentials globally. We con-
struct a conditional random field(CRF) and use the Loopy
Belief Propagation to find the optimised routing weight.
Specifically, we construct a CRF where each node repre-
sents a capsule, and node i’s nc-dimensional random vari-
ables {zi} correspond to the routing weights. Given the
unary ψi and binary potentials ϕi,i′ described above, we
initialize the messagem0

ii′(zi)[i
′] = 1/nc as uniform distri-

bution, and update the message with the following formula:

mt
i→i′(zi′) =

∑
zi

ϕi,i′(zi, zi′)ψi(zi)
∏

k⊇Ni\i′
mt−1

k→i(zi).

(5)
where Ni\i′ is the neighbors of node i except the node i′.
After T iteration, we gather the message for all node and
variable and obtain the marginal probability:

bi(zi) =
1

Zb
ψi(zi)

∏
k⊇Ni

mT
k→i(zi), (6)

where Zb is the normalizing factor. The resulting marginal
probability is the corresponding routing weights rlij =
bi(zi)[j]. We implement the above Loopy Belief Propa-
gation process as a non-parametric layer such that it can
back-propagate the gradient.

3.4. Capsule layer

In a general neural network, the forward propagation has
xj = σ(

∑
i Wijxi), where xi and xj are the neurons in

consecutive layers and σ is a activation function. After
grouping a set of neurons into nc capsules, the linguisti-
cally routing weights {rlij}i,j=1:nc

are applied to reweight
the linear transformation from capsule i to capsule j. For-
mally,

xl+1
j = σ(

∑
i

rlijWijx
l
i), (7)

where xl
i is the i-th capsule in layer l and xl+1

j is the j-
th capsule in the next layer l + 1. Routing weight rlij is a
number between [0, 1] and have

∑
j r

l
ij = 1.

For the convolution layer, the same convolution opera-
tion on spatial dimension, and apply the routing weights on
the feature channel.

xl+1
w,h,j = σ(

∑
i

rlij
∑
a

∑
b

Wijx
l
w+a,h+b,i), (8)

where w and h are the spatial location in the feature map.
We apply the convolution operation on each capsule i to ob-
tain nc feature maps x̂l

ij . We also apply global max pooling
and two fully-connected layers on each capsule i to pre-
dict the unary potential and obtain the routing weights rlij .
Lastly, we obtain capsule j in the next layer by summing
the weighted feature maps

∑
i r

l
ijx̂

l
ij .

All the above operations are differentiable. Thus, the
proposed linguistically routing can be end-to-end trained
along with other network parameters. During training, We
only use the answer label as supervision signal and train the
whole capsule network in an end-to-end manner.

4. Experiment
In this section, we validate the effectiveness and gener-

alization capability of our method on the CLEVR compo-
sition generalization test, and the VQA-CP v2 dataset. We
also evaluate our proposed method on the VQAv2 dataset to
verify its performance on in-domain test data.

4.1. Datasets

The CLEVR composition generalization test
(CLEVR-CoGenT) [25] is proposed to investigate
the composition generalization ability of a VQA model.
This dataset contains 130, 000 images and 1, 299, 923
questions. The images are rendered with objects of random
shapes, colors, materials, and sizes. And the questions
are synthesized based on functional program layouts. Its
validation split has two conditions: in condition A, all
cubes are gray, blue, brown, or yellow, and all cylinders
are red, green, purple, or cyan. In condition B, cubes and
cylinders swap color palettes. Thus, the test samples are
out of training distribution. A model cannot achieve good
performance on condition B by simply memorizing and
overfitting the samples in condition A.

Visual Question Answering under Changing Priors
(VQA-CP) v2 dataset [1] is constructed by re-organizing
the train and validation splits of the VQA v2 dataset, such
that the training and testing answer have different distribu-
tions. The VQA-CP v2 has been one of the most popular
benchmarks for the out-of-distribution VQA task.

VQAv2 [17] is the most popular VQA benchmark.
Its training split contains 82, 783 images and 443, 757



Model A B
IEP [26] 96.6 73.7
NS-VQA [46] 99.8 63.9
NS-VQA+Ori [46] 99.8 99.7
SA [26] 80.3 68.7
MAC [22] 97.66 74.75
PTGRN [9] 97.35 83.50
FiLM [36] 98.3 75.6
FiLM 0-Shot [36] 98.3 78.8
TbD+reg [33] 98.8 75.4
LR-Capsule(ours) 98.1 85.6

Table 1: Answering accuracy on the CLEVR-CoGenT vali-
dation set. Each method is trained on condition A only and
is evaluated on both conditions A and B.

VQA-CP v2 Test
Method All Yes/no Number Other
AReg [37] 41.17 65.49 15.48 35.48
MuRel [7] 39.43 42.85 13.17 45.04
ReGAT [31] 40.42 - - -
NSM [23] 45.80 - - -
RUBi [8] 47.11 68.65 20.28 43.18
RUBi+UpDn [8] 44.23 67.05 17.48 39.64
SCR [43] 48.47 70.41 10.42 47.29
LMH [13] 52.45 69.81 44.46 45.54
LR-Capsule(ours) 52.19 76.44 28.37 46.02

Table 2: Question answering accuracy on the VQA-CP v2
test split.

questions; the validation split contains 40504 images and
214, 354 questions; and its test split contains 81, 434 im-
ages and 447, 793 questions. Each question has 10 human-
annotated answers.

4.2. Implementation details

To verify the effectiveness of our proposed linguistically
routing, we use two state-of-the-art methods, FiLM [36] and
MCAN [47], as backbone architecture and replaced their
convolution or fully connected layer with capsule layer re-
spectively.

For the CLEVR-CoGenT datasets, we follow FiLM [36]
to extract the image feature and word embedding. We resize
the images to 224×224, and extract 14×14×1024 feature
v from conv4 of the ResNet-101 [18] that was pretrained on
ImageNet. The 1024-dimensional feature maps are concate-
nated with a 2-channel coordinate map and are projected
onto a 128-dimensional space using a single 3 × 3 convo-
lutional layer. The word embedding vector wi for the ques-
tion is obtained via the gated recurrent network (GRU) [12].
We first embed the word into a 200-dimensional vector and

Method All Yes/no Number Other
AReg [37] 62.75 79.84 42.35 55.16
ReGAT [31] 67.18 - - -
RUBi [8] 61.16 - - -
RUBi+UpDn [8] 50.56 49.45 41.02 53.95
SCR [43] 62.30 77.40 40.90 56.50
LMH [13] 61.64 77.85 40.03 55.04
LMH-CSS [11] 59.91 73.25 39.77 55.11
MCAN [47] baseline 67.2 84.8 49.3 58.6
LR-Capsule(ours) 67.04 84.57 48.66 58.57

Table 3: Question answering accuracy on the VQA v2 vali-
dation split.

then feed the entire question into a 512-dimensional bi-
GRU. The word embedding {wi}i=1:nq

are the hidden vec-
tors of the GRU at their corresponding position. Then, we
perform the word-level multimodal embedding on the im-
age feature v and the word embedding {wi}i=1:nq

. The
resulting multimodal representations X0 = {x0

i }i=1:nq
is

the lowest feature map of the neural network, where the
nq = 46 is the maximum length of questions in CLEVR-
CoGenT datasets. Each capsule x0

i is a 14 × 14 × 128
feature map, and its encoded words c0i is a one-hot vector
where c0i [i] = 1. Since the maximum number of the level-
1 nodes in the parsed tree is 9, we set the capsule number
as 9; each capsule has 16 feature channels. The heights
of parse trees in CLEVR-CoGenT are mostly less than 4.
Thus, we keep the top-4 levels of the parse tree and set the
number of convolutional capsule layers to 4. During lin-
guistically routing, each 14 × 14 × 16 capsule is fed into a
global max pooling layer, two fully connected layers with
output sizes of 512 and 9, where 9 is the number of cap-
sules in the next layer. Given the binary potential and the
9-dimensional unary potential, we perform the loopy be-
lief propagation 2 iterations to obtain the routing weights r.
Each capsule layer has 3× 3× 144 convolution kernel, fol-
lowed by a batch normalization, a multiplicative fusion with
the transformed question embedding, a ReLU activation,
and a residual connection. Lastly, the classifier convolves
the 144-dimensional feature maps to 512 dimensions and
feeds the result into two fully connected layers with output
sizes of 1024 and 29, where 29 is the number of candidate
answers.

For the VQA-CP v2 and VQAv2 dataset, we modified
the Modular Co-Attention Networks (MCAN) [47] and in-
troduce the linguistically routing in the guided-attention
blocks. Similar to MCAN, the words are embedded by
an LSTM and 6 self-attention blocks, resulting in 512-
dimensional word embedding vectors. The image feature
is extracted by the bottom-up top-down model [2]. Each
image has 36 objects with 2048-dimensional feature vec-
tors. We split each object feature into 16 capsules with 32-



Binary CLEVR-CoGenT VQA-CP v2
Potential A B Test
Baseline 97.59 78.19 51.15
0 98.00 82.17 51.62
0.5 97.71 82.25 51.68
1 98.10 85.58 52.18
2 96.27 79.16 51.73

Table 4: The performance of different binary potentials on
CLEVR-CoGenT and VQA-CP v2.

dimension. Then we project the words’ embedding to 32-
dimensional vector and fuse them with the 32-dimensional
visual feature. Thus, the capsule number is 16 and each cap-
sule contains 32 neurons. The image is first passed through
3 guided-attention blocks. Then we only replace the feed-
forward layer in the last 3 guided-attention blocks with the
linguistically routing capsule layer. We perform linguisti-
cally routing for each object individually. For each object,
their 32-dimensional capsules are fed into two fully con-
nected layers with output sizes of 32 and 16 to predict the
unary potential. We also perform 2 iterations of loopy be-
lief propagation to obtain the routing weights r. The clas-
sifier is the same as the MCAN [47]. It performs atten-
tion on question words and 36 image objects, then obtains
a 1024-dimensional vector. The classifier project the 1024-
dimensional vector to 3129-dimension, where the number
of the answer candidates is 3129.

To reduce the computational complexity for CLEVR-
CoGenT, we prune the leaf nodes that are neither nouns nor
words denoting colors. The model is trained with Adam op-
timizer [29]. The base learning rate is 3e−4 for the CLEVR-
CoGenT and is 1e−4 for the VQA-CP v2 and VQAv2, re-
spectively. The batch size are 64 and 256 respectively. The
weight decay, β1 and β2 are 1e−5, 0.9, and 0.999.

4.3. Comparison with state-of-the-art methods

CLEVR compositional generalization test We re-
port the answering accuracy of different models on
CLEVR-CoGenT in Table 1. The accuracy is obtained
by training the models in Condition A, and evaluating on
both Condition A and Condition B without fine-tuning. As
shown in Table 1, while achieving a comparable accuracy
in Condition A, our proposed linguistically routing signif-
icantly outperforms all the compared methods except NS-
VQA+Ori [46] in Condition B. Note that NS-VQA+Ori re-
quires both scene graph and a question’s functional layout
as additional supervised signals. Without additional train-
ing signals, its accuracy downgrades to 63.9%. This verifies
the effectiveness of our model in terms of the composition
generalization ability.

VQA-CP v2 dataset We report the standard VQA
evaluation metric [5] in Table 2. We combine our method

CLEVR-CoGenT VQA-CP v2
A B Test

Baseline 97.59 78.19 51.15
+scale 97.89 81.73 51.74
+mul 97.32 78.01 51.15
+unary 98.00 82.17 51.62
+unary+binary 93.61 78.29 51.63
+unary+binary+parser 98.10 85.58 52.18

Table 5: The performance of different reweighting schemes
on CLEVR-CoGenT and VQA-CP v2.

with RUBi [8] and obtain 52.19%. This result improves
the original RUBi [8] by 5.08% and is the best perfor-
mance among single-model-based methods. This result is
also close to 52.45%, which is obtained by the ensemble-
based method LMH [13]. The experiments have shown the
effectiveness of our method and its potential of combining
other works for better performance.

VQAv2 dataset Table 3 gives the results on VQAv2
validation set. The MCAN baseline surpasses all compared
methods in terms of answering accuracy. Compared with
this strong baseline, our method can achieve similar re-
sults on in-domain test data while achieving superior per-
formance on the VQA-CP v2 dataset. Our method also
surpasses the best VQA-CP v2 method LMH [13] by a
large margin on the VQAv2 dataset. The experimental re-
sults demonstrate that our model can improve generaliza-
tion ability while not losing the performance on in-domain
test data.

4.4. Ablation Studies

We evaluate the effectiveness of our proposed linguis-
tically routing on the CLEVR-CoGenT and the VQA-CP
v2 by changing the binary potential ϕi,i′ . The results are
shown in Table 4. The “Baseline” model is a regular net-
work that has the same architecture and word-level multi-
modal embedding as our main model but without routing.
The next row is a baseline result that only includes multi-
plicative unary potential by setting the binary potential ϕi,i′
to 0. In the following rows, the linguistic constraint be-
comes stricter as we increase the binary potential. The per-
formance increases as the binary potential increases from 0
to 1, but drops when the potential becomes larger than 1.
Since we normalize the unary potential between [0, 1], we
assume smaller binary potential can’t introduce the linguis-
tic constraint strictly enough. But if the potential becomes
too large, the constraint will prevent the routing process se-
lect the proper capsules and lead to the decrease of model
capacity.

We show the performance of different model vari-
ants on Table 5tTo further inspect the influence of multi-
plicative interaction. We remove the softmax normaliza-



Figure 4: Visualization example of our routing result on the CLEVR-CoGenT. We display all capsules and all layers but omit
the padding words. Thus, the number of capsules displayed at layer 0 is equal to the question length. The curved edge in the
parse tree indicates the pruned leaf nodes, and the blue circles indicate the capsule that should be merged at the next layer.

tion(“+scale”) applied on the unary potential and gener-
ate the elementwise multiplicative vector instead of a sin-
gle unary value(“+mul”). The “+unary+binary” indicates
a model that learns the binary potential based on the an-
swer classification loss only. We concatenate the features
of every capsule pairs and use two fully connected layers
to predict the nc ∗ nc matrix described in Section 3.3. Ta-
ble 5 shows that different model variants achieve similar
accuracy on Condition A. However, the accuracy on out-of-
distribution samples varies considerably. The unary routing
improves the accuracy by 3.98% and 0.47% compared with
the baseline models on the CLEVR-CoGenT Condition B.
Our full model “+unary+binary+parser” also achieves bet-
ter results than “+scale” and “+mul”, which demonstrates
the effectiveness of the linguistic guidance.

4.5. Visualization of routing results

We visualize our routing result in Figure 4. The input
questions, image, and linguistic guidance are shown on the
left, while the routing results are shown on the right. The
example firstly combines the terms “gray” and “objects”,
same with the parse tree. However, it combines the “yellow
objects” with “how many” in the third layer and encodes the
“yellow objects” and the “gray objects” separately. It then
combines them to predict the answer at last. The example
follows the linguistic guidance at first but demonstrates a
more reasonable routing process than the parse tree to an-
swer the question. Due to the limited page space, more ex-
amples are provided in the supplementary file.

5. Conclusion

We propose the Linguistically Routing that can incorpo-
rate the linguistic information in an end-to-end manner to
improve the capsule network’s generalization capability on
OOD data. We use the unary potential for each capsule to
activate a proper high-level capsule, and use the binary po-
tential for capsule pairs to incorporate the linguistic struc-
tures. A CRF is applied to maximize two types of potential.
As we bind the lowest visual feature with a single word, the
bottom-up linguistic-guided merging process can combine
the words into phrases, clauses, and finally a sentence. After
forwarding all layers, the parse tree is carved inside the net-
work and entangled with visual patterns. In the future, we
will progressively refine our model to further improve its
generalization ability and broaden its application domain.
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